شرایط پایداری سیستم های زمان گسسته
ترجمه نشده

شرایط پایداری سیستم های زمان گسسته

عنوان فارسی مقاله: نگرشی به شرایط پایداری سیستم های زمان گسسته با تأخیر متغیر زمانی
عنوان انگلیسی مقاله: An Insight into Stability Conditions of Discrete-Time Systems With Time-Varying Delay
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی برق
گرایش های تحصیلی مرتبط: مهندسی کنترل
کلمات کلیدی فارسی: سیستم زمان گسسته، کاربرد لیاپانوف، پایداری، نابرابری جمعی، تأخیر متغیر زمانی
کلمات کلیدی انگلیسی: Discrete-time system, Lyapunov functional, stability, summation inequality, time-varying delay
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2949690
دانشگاه: School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China
صفحات مقاله انگلیسی: 7
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13913
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. The Main Result

III. Further Verification With BRLS

IV. Conclusion

Authors

References

بخشی از مقاله (انگلیسی)

Abstract

This note studies an interesting phenomenon for stability conditions of discrete-time systems with time-varying delay. The underlying reason behind this phenomenon is revealed, and thereafter some conclusions are drawn: (i) Stability conditions of discrete-time systems with time-varying delay are generally divided into two types: those obtained by summation inequalities with free-matrix variables and those obtained by the combination of summation inequalities without free-matrix variables and the reciprocally convex lemma; (ii) The conservatism between the two types of stability conditions can not be theoretically compared. To clearly demonstrate this interesting phenomenon and meanwhile, to further verify these conclusions, several bounded real lemmas are obtained via different bounding-inequality methods and applied to a numerical example.

Introduction

Since time delay is often encountered in the real world such as network and mechanical engineering [1], [2], the stability analysis for discrete-time systems with time-varying delay has attracted considerable attention. Until now, many remarkable results have been reported in the literature [1]–[39] such as the free-matrix-weighting technique [3], the delaypartitioning method [4], the bounding-equality method [1], [5]–[7]. Compared with other techniques, the boundinginequality method, owing to its effectiveness and straightforwardness, has been widely used in the Lyapunov–Krasovskii (L–K) functional method. As far as the authors know, three bounding-inequality methods have been established to estimate the summation term δ(k). Owing to the conservatism of Jensen inequality [1], the Wirtinger-based summation inequality (WBSI) was proposed [8]–[10]. Combined with the reciprocally convex lemma (RCL) [7], a more relaxed stability condition was obtained in [9]. This method is called WBSI + RCL method. Thereafter, a free-matrix-based summation inequality (FMBSI) was proposed by introducing some free matrix variables [11]. Based on FMBSI, a new stability condition was obtained in [11]. This method is called FMBSI method. Recently, an improved summation inequality was proposed in [12] by considering both δ۱(k) and δ۲(k) together. In fact, this inequality can be directly obtained by combining WBSI and the improved RCL (see (5) below).