عملکرد تأخیر گروه منفی تمام گذر
ترجمه نشده

عملکرد تأخیر گروه منفی تمام گذر

عنوان فارسی مقاله: عملکرد تأخیر گروه منفی تمام گذر با توپولوژی بازخورد خط انتقال
عنوان انگلیسی مقاله: All-Pass Negative Group Delay Function With Transmission Line Feedback Topology
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی برق
گرایش های تحصیلی مرتبط: مهندسی کنترل، مهندسی الکترونیک
کلمات کلیدی فارسی: عملکرد تأخیر گروه منفی تمام گذر، نظریه مدار، تأخیر گروه منفی، بازخورد زنجیره مستقیم واحد، مدلسازی پارامتر S، خط انتقال
کلمات کلیدی انگلیسی: All-pass NGD function, circuit theory, negative group delay (NGD), unit direct chain feedback (UDCF), S-parameter modeling, transmission line (TL
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2949642
دانشگاه: School of Electronic and Information Engineering, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
صفحات مقاله انگلیسی: 13
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13926
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Theoretical Investigation on the Delay TL Feedback Based Unity Direct Chain Feedback (UDCF) Topology

III. UDCF Transmittance Analysis

IV. NGD Analysis Applied to the TL Based UDCF Topology

V. UDCF NGD Function Validation Results

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

A novel circuit theory of all-pass Negative group delay (NGD) function is investigated. The NGD function is implemented with unity direct chain feedback (UDCF) system. The active circuit is built with an operational amplifier in feedback with a lossy transmission line (TL). The UDCF topology S-parameter model is established versus TL parameters. The NGD analysis is elaborated from the frequency dependent transmission coefficient. The NGD behavior characterization is developed. The synthesis method allowing to determine the UDCF topology parameters in function of the targeted NGD values, gain and reflection coefficient is formulated. The all-pass NGD function is validated with a proof-of-concept (POC) design. Frequency and time domain simulations confirm the feasibility of the innovative all-pass NGD function. With S-parameter analysis, it was shown that the UDCF circuit exhibits NGD up to −7-ns with gain more than 0-dB and reflection coefficient −20-dB. More importantly, time-domain analysis illustrates how the transient tested voltage outputs can be in advance compared to the input.

Introduction

Despite the spectacular development of the modern technology, the delay effect remains an open problem in several areas of engineering [1]–[4]. The performances of electrical, electronic, automatic and many more systems depend undesirably to the delay effects. The analytical link between the delay and system operation can be quantified from the system transfer functions. The system unit-step and harmonic responses illustrate how the delay degrade the performances. For example, the detrimental influence of time delays can be found in different aspects of automatic system analyses [5]–[7]. Among the concerning system, we can cite that very recently a prediction scheme for input delay was investigated [8], and a linear system stability condition was established as a function of the dwell-time parameters [9]. Nowadays, time delays constitute one of key parameters to be taken into account during the design and fabrication of automatic and electronic engineering systems. Improved studies on the time-delay effect are necessary during the engineering system design phase. Time-delay modules can be found at all levels of several engineering systems. For example, time-delay systems were applied to control the time lags used in vibrational feedback control [10]. An improved stabilization technique dedicated to linear systems with time delay has been proposed in [11].