یادگیری آنلاین در تیم های چند رباتی
ترجمه نشده

یادگیری آنلاین در تیم های چند رباتی

عنوان فارسی مقاله: آموزش و یادگیری آنلاین رفتارهای پیدایشی در تیم های چند رباتی
عنوان انگلیسی مقاله: Online Learning and Teaching of Emergent Behaviors in Multi-Robot Teams
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی برق
گرایش های تحصیلی مرتبط: رباتیک
کلمات کلیدی فارسی: یادگیری چند رباتی، ربات های مبتنی بر رفتار، انتقال دانش، رفتار پیدایشی
کلمات کلیدی انگلیسی: Multirobot leaning, behavior-based robotics, knowledge transference, emergent behavior
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2951013
دانشگاه: Department of Computer and Automation, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59064-741, Brazil
صفحات مقاله انگلیسی: 13
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13976
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. The N-Learning Approach

III. Emergent, Generator and Model Behaviors

IV. Experiments and Results

V. Conclusion and Future Works

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

In this manuscript, we propose an approach that allows a team of robots to create new (emergent) behaviors at execution time. Basically, we improve the approach called N-Learning used for selfprogramming of robots in a team, by modifying and extending its functioning structure. The basic capability of behavior sharing is increased by the catching of emergent behaviors at run time. With this, all robots are able not only to share existing knowledge, here represented by blocks of codes containing desired behaviors but also to creating new behaviors as well. Experiments with real robots are presented in order to validate our approach. The experiments demonstrate that after the human-robot interaction with one robot using Program by Demonstration, this robot generates a new behavior at run time and teaches a second robot that performs the same learned behavior through this improved version of the N-learning system.

Introduction

Brooks [1] was the first researcher to propose the concept of behavior-based robotics (BBR). This paradigm can be understood as a framework that uses a set of behaviors used by a group of robots. In BBR, a behavior selector chooses the appropriate behavior according to the current situation. The advantage of our approach is that the proposed architecture is modular-based, solving each problem separately by applying one or more behaviors. A behavior can be external when interacting directly with the environment, or internal when resulting in changes in the internal structures of a robot [2]. With this definition, we can create behaviors focusing on cognitive tasks [3]. The first time that the transferring (learning and teaching) of pre-programmed behaviors was proposed was in the work of Costa et al. [4], through the approach called N-learning. In the N-learning approach, behaviors are blocks of code with information about the execution of a specific maneuver or action, which can be shared throughout the multirobot team at execution time. The main objective of the approach is to enable a group of robots to share knowledge through their interactions. The knowledge is represented here as one or more behaviors that enable the robot team to adapt to situations that are not previously taught in its initial programming.