ارزیابی ظرفیت لرزه ای تونل با پوشش شکسته
ترجمه نشده

ارزیابی ظرفیت لرزه ای تونل با پوشش شکسته

عنوان فارسی مقاله: ارزیابی ظرفیت لرزه ای تونل با پوشش شکسته بر اساس روش شبه استاتیک
عنوان انگلیسی مقاله: Seismic capacity assessment of cracked lining tunnel based on the pseudo-static method
مجله/کنفرانس: تونل سازی و فناوری فضای زیرزمینی – Tunnelling and Underground Space Technology
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: سازه، زلزله
کلمات کلیدی فارسی: ظرفیت لرزه ای، تونل، پوشش دائمی، شکستگی، روش شبه استاتیک، تغییرپذیری آسیب
کلمات کلیدی انگلیسی: Seismic capacity، Tunnel، Permanent lining، Crack، Pseudo-static method، Damage plastic
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.tust.2020.103281
دانشگاه: Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
صفحات مقاله انگلیسی: 15
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4.644 در سال 2019
شاخص H_index: 77 در سال 2020
شاخص SJR: 2.243 در سال 2019
شناسه ISSN: 0886-7798
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14195
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction

۲٫ Engineering background

۳٫ Methodology

۴٫ Numerical model description and validation

۵٫ Numerical result and discussion

۶٫ Conclusions

CRediT authorship contribution statement

Acknowledgments

References

بخشی از مقاله (انگلیسی)

Abstract

Crack is one of the most common lining deteriorations, which is generally regarded as an indicator of tunnel safety. The present study investigated the lining cracks of 11 tunnels which are 200 km away from the Longmenshan fault zone. In order to evaluate the seismic capacity of these tunnels with longitudinal cracks in the permanent lining, a modified deformation-based pseudo-static assessment method was developed. The propagation of lining cracks was simulated by a reconstructed damaged plasticity constitutive model of reinforced concrete. The analyses adopted a two-dimensional finite element model and took tunnel depth, initial crack position, and the interaction between soil and lining structures into account. The analysis results showed that the modified evaluation method could simulate the damage process of lining structures under the action of seismic shear wave well. The results also showed that the failure modes of tunnels with cracked permanent lining were different with different burial depth in an earthquake. The cracks in the spandrel had the greatest impact on the seismic capacity of tunnels and should be reinforced in time before the earthquake. In addition, the interaction between the temporary support and permanent lining had little effect on the damage process of linings but had an impact on the damage speed. This study can provide a reference for the safety assessment of cracked lining tunnels in seismically active areas and help to determine the reinforcement measures and time more reasonably.

Introduction

A large number of tunnels have been built in the mountainous areas of western China. In the past 10 years, seismic activity in this area, including four intensive earthquakes: the 2008 Wenchuan Earthquake (Ms = 8.0), 2010 Yushu Earthquake (Ms = 7.1), 2013 Lushan Earthquake (Ms = 7.0) and 2017 Jiuzhaigou Earthquake (Ms = 7.0). Although underground structures are generally considered to be more seismic-resistant than overground structures, some relevant literature shows that tunnels can be damaged in strong earthquakes (Asakura, 1997; Shen et al., 2014; Wang et al., 2001; YASHIRO and KOJIMA, 2007). Therefore, as an important part of transportation infrastructure, the seismic performance of tunnels in seismically active areas is still an important issue. Tunnels generally satisfy the seismic design requirements in a long period after the construction. However, the time-dependent deterioration of rock masses and lining structures are sometimes inevitable, which may lead to degradation in operational tunnels, such as cracks, leakage and spalling. Lining cracks are the most common tunnel anomalies, which are frequently regarded as one of the indicators of tunnel safety (Asakura and Kojima, 2003; Richards, 1998; Yuan et al., 2012). Cracks bring leakage, carbonization, and corrosion to the concrete structure, and even destroy the structural integrity, leading to spalling and collapse.