سازه بتنی مسلح در معرض زلزله و سونامی پشت سر هم
ترجمه نشده

سازه بتنی مسلح در معرض زلزله و سونامی پشت سر هم

عنوان فارسی مقاله: توابع شکنندگی برای سازه بتنی مسلح در معرض زلزله و سونامی پشت سر هم
عنوان انگلیسی مقاله: Fragility functions for a reinforced concrete structure subjected to earthquake and tsunami in sequence
مجله/کنفرانس: ساختارهای مهندسی - Engineering Structures
رشته های تحصیلی مرتبط: عمران
گرایش های تحصیلی مرتبط: سازه، زلزله، مدیریت ساخت، سازه های دریایی
کلمات کلیدی فارسی: زلزله-سونامی متوالی ، خطر زلزله پیاپی، مهندسی سونامی، منحنی شکنندگی، تحلیل تاریخچه زمانی
کلمات کلیدی انگلیسی: Sequential earthquake-tsunami، Cascading earthquake hazard، Tsunami engineering، Fragility curve، Time-history analysis
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.engstruct.2019.110120
دانشگاه: Willis Towers Watson, London, UK
صفحات مقاله انگلیسی: 14
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 3/604 در سال 2019
شاخص H_index: 114 در سال 2020
شاخص SJR: 1/628 در سال 2019
شناسه ISSN: 0141-0296
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14298
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Case-study application

3- Results and discussion

4- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

Many coastal regions lying on subduction zones are likely to experience the catastrophic effects of cascading earthquake and tsunami observed in recent events, e.g., 2011 Tohoku Earthquake and Tsunami. The influence of earthquake on the response of the structure to tsunami is difficult to quantify through damage observations from past events, since they only provide information on the combined effects of both perils. Hence, the use of analytical methodologies is fundamental. This paper investigates the response of a reinforced concrete frame subjected to realistic ground motion and tsunami inundation time histories that have been simulated considering a seismic source representative of the M9 2011 Tohoku earthquake event. The structure is analysed via nonlinear time-history analyses under (a) tsunami inundation only and (b) earthquake ground motion and tsunami inundation in sequence. Comparison of these analyses shows that there is a small impact of the preceding earthquake ground shaking on the tsunami fragility. The fragility curves constructed for the cascading hazards show less than 15% reduction in the median estimate of tsunami capacity compared to the fragility functions for tsunami only. This outcome reflects the fundamentally different response of the structure to the two perils: while the ground motion response of the structure is governed by its strength, ductility and stiffness, the tsunami performance of the structure is dominated by its strength. It is found that the ground shaking influences the tsunami displacement response of the considered structure due to the stiffness degradation induced in the ground motion cyclic response, but this effect decreases with increasing tsunami force.

Introduction

Tsunami have contributed to 250,125 deaths between 1994 and 2013 [1]. They are the deadliest natural hazard, with an average of 79 deaths for every 1000 people affected, compared to four deaths per 1000 for other natural hazards. Past tsunami have caused widespread damage and economic losses, with a direct loss of US$211 billion being estimated for the 2011 Tohoku event alone [2]. Exposure to this hazard is high, as 6 out of the 10 most populous megacities are at risk of being severely affected by storm surge and tsunami [3]. Moreover, regions at highest risk lie on subduction zones around the Pacific “Ring of Fire” (e.g., Japan, Indonesia, Pacific Northwest), and hence are likely to experience strong ground shaking as well as tsunami inundation [4]. An important component in the evaluation of tsunami impact or risk is the estimation of building response due to tsunami onshore flow. To date the majority of research on this topic has focussed on the development of fragility functions based on post-tsunami damage observed at a given location, so-called “empirical fragility functions”, e.g. Suppasri et al. [5] among many others. Empirical tsunami fragility functions are by their nature specific to the event represented in the post-event damage data as well as the local building stock, and are limited by the typical absence of locally recorded tsunami intensity measures, such as the flow velocity. They commonly adopt building damage observations from locations that have been affected by both earthquake and tsunami hazards, implicitly including the response of buildings to the combined hazards. Assessment of structural performance through numerical analyses is therefore essential to overcome these limitations. Analytical fragility functions are therefore needed to complement empirical assessments for a physical understanding of structural behaviour under cascading earthquake and tsunami.