آزمون میز لرزه ای روی اتصالات انعطاف پذیر تونل های کوهستانی
ترجمه نشده

آزمون میز لرزه ای روی اتصالات انعطاف پذیر تونل های کوهستانی

عنوان فارسی مقاله: آزمون میز لرزه ای روی اتصالات انعطاف پذیر تونل های کوهستانی که از گسل طبیعی عبور می کنند
عنوان انگلیسی مقاله: Shaking table test on flexible joints of mountain tunnels passing through normal fault
مجله/کنفرانس: تونل سازی و فناوری فضای زیرزمینی - Tunnelling And Underground Space Technology
رشته های تحصیلی مرتبط: مهندسی معدن
گرایش های تحصیلی مرتبط: تونل و فضای زیرزمینی
کلمات کلیدی فارسی: تونل كوهستاني، اتصال انعطاف پذیر، حركت گسل، حركت لرزه اي، آزمون میز لرزه ای
کلمات کلیدی انگلیسی: Mountain tunnel، Flexible joint، Fault movement، Seismic motion، Shaking table test
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.tust.2020.103299
دانشگاه: Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4/644 در سال 2019
شاخص H_index: 77 در سال 2020
شاخص SJR: 2/243 در سال 2019
شناسه ISSN: 0886-7798
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 12
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14409
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


1- Introduction


2- Field investigation and analysis of tunnel damage through fault zone


3- Design idea of sectional tunnel lining with flexible joints through fault


4- Experimental method and apparatus


5- Model test results and discussion


6- Conclusions


References

نمونه متن انگلیسی مقاله

Abstract


Tunnels often suffered severe seismic damage when passing through the active fault in high intensity earthquake area. The fault movement might be divided into fault movement and seismic motion under the strong earthquake action, and both of them could have the significant influence on the stability of tunnel structure. To improve the seismic performance of the mountain tunnel through fault, a design idea or method of the between sectional tunnel structures with the flexible joint were put forward to run through the active fault and verified or analyzed by using the shaking table test. Firstly, the typical seismic damage characteristics of the tunnel passing through the fault were analyzed after Wenchuan earthquake; secondly, the sectional tunnel linings with the flexible joint were designed in the active fault zone under the strong seismic motion, and the basic theory of this design method was presented in detail. Thirdly, the scaled model shaking table test was carried out to study the seismic performance of flexible joints of tunnels under the normal fault action, and some key parameters of the test was designed, including similarity relationship, boundary condition, sensor layout, input earthquake wave and flexible joint design. The test results showed that the joints between sectional linings could make structure localize damage rather than global damage, and compared to seismic motion, the fault movement suffered more serious damage for the tunnel structure. The tunnel lining at hanging wall was more susceptible to damage or destroy than that at the footwall under the normal fault action, and the flexible joint could adapt to the differential deformation of fault during the strong earthquake. Lastly, the dynamic response of the tunnel lining demonstrated that the upper-structure of the tunnel mainly suffered the severe seismic load, while the lower-structure might experiences the imposed deformation of fault movement under strong earthquake motion. So the design method of the sectional tunnel lining with the flexible joint would be applied to tunnel structure design to improve the adaptive deformation ability of tunnel structure through active fault.


Introduction


For a long time, the underground structure has been generally considered to suffer a lower level of damage in comparison with the surface structure during an earthquake (Asakura et al., 2007). The tunnel engineering project will be prior to be recommended due to the advantages of shortening lines, smoothing the curve of traffic lines and resisting geological hazards and earthquake disaster (Yan et al., 2020a, 2020b). However, tunnels located in the active fault area are easily vulnerable to damage by shear deformation under strong ground motion (Kun and Onargan, 2013). A lot of tunnels are designed or constructed in China Western and inevitably cross through active fault zones in mountainous area with some disasters. Therefore, the damage mechanism of the tunnel through fracture zone should be firstly demonstrated under the strong ground motion, and some seismic design method need to be studied to improve the seismic performance of the tunnel running through fault zone in the high intensity earthquake area. A number of related researches have been carried out to investigate the damage mechanism and seismic design method for tunnels crossing the fault section including numerical simulation (Anastasopoulos et al., 2008; Wang and Zhang, 2013), theoretical analysis (Zhang et al., 2018) and model tests (Su et al., 2019; Wang et al., 2019a, 2019b). Researches have shown that the most severe earthquake damage occurs in fault fracture zones, followed by tunnel entrances and public road sections (Lai et al., 2017; Yu et al., 2016).

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

آزمون میز لرزه ای روی اتصالات انعطاف پذیر تونل های کوهستانی
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها