استراتژی تعمیر و نگهداری پویا
ترجمه نشده

استراتژی تعمیر و نگهداری پویا

عنوان فارسی مقاله: استراتژی تعمیر و نگهداری پویا با اطلاعات گروهی تکراری و به روز
عنوان انگلیسی مقاله: Dynamic maintenance strategy with iteratively updated group information
مجله/کنفرانس: مهندسی قابلیت اطمینان و ایمنی سیستم – Reliability Engineering & System Safety
رشته های تحصیلی مرتبط: مهندسی صنایع
گرایش های تحصیلی مرتبط: برنامه ریزی و تحلیل سیستم ها، بهینه سازی سیستم ها
کلمات کلیدی فارسی: تعمیر و نگهداری پویا، تعمیر و نگهداری فرصت طلبانه، گروه بندی تعمیر و نگهداری، سیستم چند جزئی
کلمات کلیدی انگلیسی: dynamic maintenance, opportunistic maintenance, maintenance grouping, multi-component system
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ress.2020.106820
دانشگاه: School of Reliability and Systems Engineering, Beihang University, Beijing, China
صفحات مقاله انگلیسی: 40
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 5.191 در سال 2019
شاخص H_index: 119 در سال 2020
شاخص SJR: 1.944 در سال 2019
شناسه ISSN: 0951-8320
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14465
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Nomenclature

۱٫ Introduction

۲٫ Literature review

۳٫ Problem statement

۴٫ Dynamic maintenance grouping approach

۵٫ Extension to condition-based maintenance

۶٫ Experimental validation

۷٫ Conclusions

Author statement

Declaration of Competing Interest

Acknowledgment

Appendix A

Reference

بخشی از مقاله (انگلیسی)

Abstract

Maintenance grouping methods such as the rolling horizon approach are effective in reducing maintenance costs of multi-component systems. Despite the theoretical advancements of this approach, it still faces three challenges. First, the extensively adopted minimal repair assumption upon failures limits its application. Second, opportunistic maintenance upon corrective maintenance is overlooked, unable to fully take advantage of economic dependence. Third, maintenance plans are not based on actual maintenance history and health information, which may increase failure risks. To address these challenges, this paper formulates a novel dynamic planning framework that captures economic dependence in both preventive and opportunistic replacement. Unlike conventional approaches that restrict all maintenance activities into a finite planning horizon, our proposal focuses on activity-to-activity scheduling without specifying the horizon. As such, the subsequent maintenance schedule is dynamically updated once a system maintenance is executed. A flexible dynamic programming algorithm is developed to optimize the maintenance grouping, and the strategy framework is further extended to condition-based maintenance scenarios. The effectiveness and generality of the proposed maintenance strategy are demonstrated by numerical experiments.

Introduction

Diverse industrial systems, such as smart grids, wind farms and high-speed trains are subject to multiple interdependencies existing among components or sub-systems [1]. Typically, there are three categories of dependencies, i.e. economic dependence [2], stochastic dependence [3], and structural dependence [4, 5]. Among them, the economic dependence attracts the most notable attention due to its significant impact on system operations & maintenance costs [6]. Such dependence allows to share set-up and downtime costs when multiple components are maintained simultaneously, so that maintenance resources can be significantly harnessed [7]. Group maintenance [2, 8-10] and opportunistic maintenance (OM) [11-14] are two representative maintenance policies taking advantage of the economic dependence. The former specifies a pre-determined schedule for inspections or preventive maintenance (PM), while the latter provides PM opportunities for other components when a component undergoes preventive or corrective maintenance (CM). Notably, OM of multi-component systems is generally scheduled based on operational age and/or the reliability level of components. This triggers tremendous operational states and brings difficulties for the analytical modelling [11, 15, 16]. Consequently, many OM policies are optimized via simulations [11, 17, 18], which is trivial and time-consuming. In this regard, recently a few researches employed (deep) reinforcement learning (RL) methods to address this problem [19-22].