برنامه تولید در مونتاژ چند محصول
ترجمه نشده

برنامه تولید در مونتاژ چند محصول

عنوان فارسی مقاله: بهینه سازی مشترک طراحی تحمل محصول، برنامه فرآیند و برنامه تولید در مونتاژ چند محصول با دقت بالا
عنوان انگلیسی مقاله: Joint optimization of product tolerance design, process plan, and production plan in high-precision multi-product assembly
مجله/کنفرانس: مجله سیستم های تولید – Journal of Manufacturing Systems
رشته های تحصیلی مرتبط: مهندسی صنایع
گرایش های تحصیلی مرتبط: تولید صنعتی، بهینه سازی سیستم ها
کلمات کلیدی فارسی: مونتاژ، بهینه سازی طراحی، متحمل سازی، برنامه ریزی فرآیند، برنامه ریزی تولید
کلمات کلیدی انگلیسی: Assembly، Design optimization، Tolerancing، Process planning، Production planning
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jmsy.2020.01.004
دانشگاه: Hitachi Ltd., Research & Development Group, 292 Yoshida-cyo, Totsuka-ku, Yokohama-shi, Kanagawa, 244-0817, Japan
صفحات مقاله انگلیسی: 12
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4.932 در سال 2019
شاخص H_index: 54 در سال 2020
شاخص SJR: 1.592 در سال 2019
شناسه ISSN: 0278-6125
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E14493
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction and motivation

۲٫ Literature review

۳٫ Problem statement

۴٫ Solution approach

۵٫ Experimental evaluation

۶٫ Discussion on practical application potential

۷٫ Conclusions and future work

Acknowledgments

References

بخشی از مقاله (انگلیسی)

Abstract

With the ever-increasing product variety faced by the manufacturing industry, investment efficiency can only be maintained by the application of multi-product assembly systems. In such systems, the product design, process planning, and production planning problems related to different products are strongly interconnected. Despite this, those interdependent decisions are typically made by different divisions of the company, by adopting a decomposed planning approach, which can easily result in excess production costs. In order to overcome this challenge, this paper proposes an integrated approach to solving the above problems, focusing on the decisions crucial for achieving the required tolerances in high-precision assembled products. The joint optimization problems related to product tolerance design and assembly resource configuration are first formulated as a mixed-integer linear program (MILP). Then, a large neighborhood search (LNS) algorithm, which combines classical mathematical programming and meta-heuristic techniques, is introduced to solve large instances of the problem. The efficiency of the method is demonstrated through an industrial case study, both in terms of computational efficiency and industrial effectiveness.

Introduction and motivation

In response to diversifying consumer preferences, many companies from the automotive, electronics, and consumer goods industries are forced to increase product variety [1–۳]. The situation is often complicated further by the changes of the conventional manufacturer-supplier relationships, e.g., in the automotive industry, where a single supplier now serves many manufacturers. Therefore, the supplier must increase its product variety, and the demand for multi-variety production grows. As a consequence, requirements of new products often cannot be satisfied by existing manufacturing and assembly lines, and therefore, investment into new equipment is inevitable. There are also attempts to lift manufacturing constraints by introducing general purpose equipment, but excessive generalization or flexibility of equipment can also lead to low production rate and low return on investments [4]. In the conventional product development process, different phases of the process focus on different issues to be resolved: first of all, product design has to meet customer specifications by selecting appropriate design alternatives. When a product design is available, process planning is responsible for realizing the design by defining the assembly resource configurations. In the operation stage, production planning assigns products to resources over time to satisfy demand in the most efficient way.