نگهداری استراتژیک برای بهبود عملکرد تولید
ترجمه نشده

نگهداری استراتژیک برای بهبود عملکرد تولید

عنوان فارسی مقاله: یک چارچوب بهینه سازی مبتنی بر شبیه سازی ترکیبی پشتیبانی از توسعه تعمیر و نگهداری استراتژیک برای بهبود عملکرد تولید
عنوان انگلیسی مقاله: A hybrid simulation-based optimization framework supporting strategic maintenance development to improve production performance
مجله/کنفرانس: مجله اروپایی تحقیقات عملیاتی – European Journal of Operational Research
رشته های تحصیلی مرتبط: مهندسی صنایع
گرایش های تحصیلی مرتبط: تولید صنعتی، بهینه سازی سیستم ها
کلمات کلیدی فارسی: ساختار مشکل، پشتیبانی از تصمیم، پویایی سیستم، بهینه سازی چند منظوره، شبیه سازی رویداد گسسته
کلمات کلیدی انگلیسی: Problem structuring، Decision support، System dynamics، Multi-objective optimization، Discrete-event simulation
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ejor.2019.08.036
دانشگاه: School of Engineering Science, University of Skövde, Skövde SE-541 28, Sweden
صفحات مقاله انگلیسی: 13
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4.712 در سال 2019
شاخص H_index: 226 در سال 2020
شاخص SJR: 2.25 در سال 2019
شناسه ISSN: 0377-2217
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E14533
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction

۲٫ Background

۳٫ Combining SD and DES for maintenance development

۴٫ Description of the HSBOF

۵٫ Discussion and conclusions

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

Managing maintenance and its impact on business results is increasingly complex, calling for more advanced operational research methodologies to address the challenge of sustainable decision-making. This problem-based research has identified a framework of methods to supplement the operations research/management science literature by contributing a hybrid simulation-based optimization framework (HSBOF), extending previously reported research. Overall, it is the application of multi-objective optimization (MOO) with system dynamics (SD) and discrete-event simulation (DES) respectively which allows maintenance activities to be pinpointed in the production system based on analyzes generating less reactive work load on the maintenance organization. Therefore, the application of the HSBOF informs practice by a multiphase process, where each phase builds knowledge, starting with exploring feedback behaviors to why certain near-optimal maintenance behaviors arise, forming the basis of potential performance improvements, subsequently optimized using DES+MOO in a standard software, prioritizing the sequence of improvements in the production system for maintenance to implement. Studying literature on related hybridizations using optimization the proposed work can be considered novel, being based on SD+MOO industrial cases and their application to a DES+MOO software.

Introduction

Maintenance considerably increases the budget in manufacturing industries. Even though a cost focus belongs to the past and maintenance has shifted towards being an organizational strategic capacity (Simões, Gomes & Yasin, 2011), the tradeoff between invested costs and their benefits is still of great concern for decision makers. A cost focus leads to reactive maintenance, which according to Geary, Disney and Towill (2006), potentially leads to increased disruption in real-world supply chains, causing excess variance in performance. Recent developments in terms of increased automation, more expensive equipment, and more complex production systems have required larger capital tied up in assets (Garg & Deshmukh, 2006), and proactive maintenance policies are therefore considered a necessity (Pinjala, Pintelon & Vereecke, 2006). Nonetheless, identifying appropriate practices and implementing sound strategies for developing maintenance performance are still non-trivial. A clear measure of this is the frequently-emphasized gap between theory and practice in the maintenance optimization literature (e.g. Fraser, Hvolby and Tseng (2015), Linnéusson, Ng and Aslam (2018a). One aspect of this gap is that little attention has been paid to making model results understandable to practitioners (Dekker, 1996, p.235). Moreover, Woodhouse (2001) identifies the organizational capabilities to manage the implementation of sustainable maintenance practices a crucial limiting factor. According to Baldwin and Clark (1992), capabilities such as identifiable combinations of skills, procedures, physical assets, and information systems are sources of superior performance.