یادگیری ماشین و هوش مصنوعی در خدمات پزشکی
ترجمه نشده

یادگیری ماشین و هوش مصنوعی در خدمات پزشکی

عنوان فارسی مقاله: یادگیری ماشین و هوش مصنوعی در خدمات پزشکی: ضرورت یا بالقوگی؟
عنوان انگلیسی مقاله: Machine learning and artificial intelligence in the service of medicine: Necessity or potentiality?
مجله/کنفرانس: تحقیقات کنونی در کاربردی سازی علوم پزشکی – Current Research in Translational Medicine
رشته های تحصیلی مرتبط: مهندسی پزشکی، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: سایبرنتیک پزشکی، هوش مصنوعی
کلمات کلیدی فارسی: هوش مصنوعی، یادگیری ماشین، کاربردهای پزشکی
کلمات کلیدی انگلیسی: Artificial intelligence, Machine learning, Medical applications
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.retram.2020.01.002
دانشگاه: Sorbonne University, Paris, France
صفحات مقاله انگلیسی: 7
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 2.327 در سال 2019
شاخص H_index: 54 در سال 2020
شاخص SJR: 0.739 در سال 2019
شناسه ISSN: 2452-3186
شاخص Quartile (چارک): Q2 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14561
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Introduction

Basic definitions

Patient Intake: obtaining initial patient data

Radiology

Hematology

Neurology

Oncology

Cell biology and cell therapy

Cardiology

Ophthalmology

Conclusion

Acknowledgments

References

بخشی از مقاله (انگلیسی)

Abstract

Motivation: As a result of the worldwide health care system digitalization trend, the produced healthcare data is estimated to reach as much as 2314 Exabytes of new data generated in 2020.

The ongoing development of intelligent systems aims to provide better reasoning and to more efficiently use the data collected. This use is not restricted retrospective interpretation, that is, to provide diagnostic conclusions. It can also be extended to prospective interpretation providing early prognosis. That said, physicians who could be assisted by these systems find themselves standing in the gap between clinical case and deep technical reviews. What they lack is a clear starting point from which to approach the world of machine learning in medicine.

Methodology and Main Structure: This article aims at providing interested physicians with an easy-tofollow insight of Artificial Intelligence (AI) and Machine Learning (ML) use in the medical field, primarily over the last few years.

To this end, we first discuss the general developmental paths concerning AI and ML concept usage in healthcare systems. We then list fields where these technologies are already being put to the test or even applied such as in Hematology, Neurology, Cardiology, Oncology, Radiology, Ophthalmology, Cell Biology and Cell Therapy.

Introduction

The introduction of information technology in the field of healthcare has provided improvements on numerous aspects [1], starting from digitization of patient data in electronic health records (EHR) [2] to providing clinical decision making [3]

As a result of the worldwide health care system digitalization trend,the produced healthcare data in 2011 have been estimated to be 150 Exabytes 150 * 10^18, and it is estimated to have 2314 Exabytes of newly produced data in 2020 [4,5]. However, processing these data efficiently so that useful information and new knowledge can be extracted remains a real challenge. In fact, the ever-increasing amount of collected data withstands the ability of current data analysis systems. As a result, healthcare systems are increasingly burdened. This is called the “Data Rich/Information Poor (DRIP)” syndrome [6]. DRIP means that we are collecting more data than we can analyze. Fortunately, with the latest advancements in data analysis and decision-making systems, overcoming this challenge seems to finally be feasible.