Abstract
1- Introduction
2- Literature review
3- Problem definition and the proposed model
4- Solution methodology
5- Experimental results
6- Managerial insight
7- Conclusion
References
Abstract
The blood supply of hospitals in disasters is a crucial issue in supply chain management. In this paper, a dynamic robust location–allocation model is presented for designing a blood supply chain network under facility disruption risks and uncertainty in a disaster situation. A scenario-based robust approach is adapted to the model to tackle the inherent uncertainty of the problem, such as a great deal of a periodic variation in demands and facilities disruptions. It is considered that the effect of disruption in facilities depends on the initial investment level for opening them, which are affected by the allocated budget. The usage of the model is implemented by a real-world case example that addresses the demand and disruption probability as uncertain parameters. For large-scale problems, two meta-heuristic algorithms, namely the self-adaptive imperialist competitive algorithm and invasive weed optimization, are presented to solve the model. Furthermore, several numerical examples of managerial insights are evaluated.
Introduction
Supply chain management (SCM) is often described as a procedure of planning, implementation, and control of supply chain operations based on efficient practices (Melo et al., 2009). The supply chain network design (SCND) has played a dominant role in the performance of the supply chain (SC). It copes with so many prospects of the SC such as information, location of facilities and allocation of material. The SCND is considered as a significant issue in strategic and operational decisions in the SCM scope (Devika et al., 2014; Amin et al., 2017; Fu and Fu, 2015). Blood supply management and its products are vital issues for humankind. Blood is not a regular commodity since its demand is relatively random, and efficient coordination between supply and demand has not been resolved in various researches yet (Beliën and Forcé, 2012). Human blood is a rare and vital source that is produced only by human beings, and since there is currently no other product that can produce blood and also its uncertainty supply and demand side, keeping an adequate supply level is very important to fulfill demands (Duan and Liao, 2014).