ترانسفورماتور HVDC الکترومغناطیسی
ترجمه نشده

ترانسفورماتور HVDC الکترومغناطیسی

عنوان فارسی مقاله: مدل وابسته به فرکانس مبتنی بر اندازه گیری ترانسفورماتور HVDC برای مطالعات جریان الکترومغناطیسی
عنوان انگلیسی مقاله: Measurement-based frequency-dependent model of a HVDC transformer for electromagnetic transient studies
مجله/کنفرانس: تحقیقات سیستم های قدرت الکتریکی – Electric Power Systems Research
رشته های تحصیلی مرتبط: مهندسی برق
گرایش های تحصیلی مرتبط: ماشین های الکتریکی، مهندسی الکترونیک
کلمات کلیدی فارسی: ترانسفورماتور HVDC، اندازه گیری، مدل جعبه سیاه، جریان های الکترومغناطیسی
کلمات کلیدی انگلیسی: HVDC transformer، Measurements، Black box model، Electromagnetic transients
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.epsr.2019.106141
دانشگاه: SINTEF Energy Research, Trondheim, NO-7465, Norway
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 3.782 در سال 2019
شاخص H_index: 104 در سال 2020
شاخص SJR: 1.037 در سال 2019
شناسه ISSN: 0378-7796
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14873
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction

۲٫ HVDC transformer

۳٫ Work strategy

۴٫ Measurements, validation (frequency domain)

۵٫ Modeling, validation (frequency domain)

۶٫ Time domain validation

۷٫ Transferred voltage at 50 Hz

۸٫ Magnetizing current

۹٫ Comparison against simplified model

۱۰٫ Discussion

۱۱٫ Conclusions

Conflict of interest

Acknowledgement

References

بخشی از مقاله (انگلیسی)

Abstract

A wide-band, frequency-dependent five-terminal model is developed that represents one HVDC transformer unit in the French-English IFA2000 HVDC interconnection. Three such interconnected 1-ph units constitute one 3-ph transformer bank needed in 12-pulse conversion. The model is obtained via admittance frequency sweep measurements on the transformer’s terminals, including common-mode measurements to capture the high-impedance coupling to earth at lower frequencies. The data set is modified to reduce the magnetizing current to a realistic level by a novel eigenvalue scaling procedure. The final data set is subjected to modeling by a stable and passive rational model while utilizing a mode-revealing transformation to retain the accuracy of the small eigenvalues that are related to the high-impedance coupling to earth. The paper describes details related to the measurements and modeling steps as well as the many intermediate accuracy validations that were done. Also is described challenges in the measurements that resulted due to interference of the measurements by a nearby 400 kV overhead line. The model is applied in a time domain simulation of the complete HVDC link in normal operation where voltage waveforms resulting from line commutations are compared against those by a classical model with added stray capacitances.

Introduction

HVDC transformers are together with thyristor valves the fundamental components in any LCC-type HVDC converter. The protection of these transformers is therefore essential for the reliable operation of the HVDC link. Overvoltages due to switching events, lightning impulses and in-station flashovers on the AC side result in steep-fronted overvoltages that stress the transformer AC side insulation parts, and voltages are also transferred to the DC-side where they stress and interfere the thyristor components [1]. Conversely, line faults and lightning strokes to a DC overhead line may result in overvoltages that impose stresses on the transformer DC-side terminals. The protection of HVDC substation against overvoltages therefore requires insulation co-ordination studies to be performed to determine the appropriate location of surge arresters [1]. Insulation co-ordination studies requires the use of models with adequate accuracy up to several hundred kHz in order to represent the actual waveshapes of the overvoltages. The representation of the HVDC transformer is a main obstacle in such studies since frequency-dependent transformer models are in general not available. Therefore, simplified models are usually employed, often consisting of a 50 Hz model in combination with lumped capacitors.