درمان هدفمند سرطان با استفاده از سیستم دارورسانی مبتنی بر نانوذرات سیلیس
ترجمه نشده

درمان هدفمند سرطان با استفاده از سیستم دارورسانی مبتنی بر نانوذرات سیلیس

عنوان فارسی مقاله: ساخت میزبان-مهمان سیستم دارورسانی مبتنی بر نانوذرات سیلیس مزوپور/اسید هیالورونیک واکنشی دو جانبه، برای درمان هدفمند سرطان
عنوان انگلیسی مقاله: Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy
مجله/کنفرانس: مجله بین المللی ماکرومولکول های بیولوژیکی - International Journal Of Biological Macromolecules
رشته های تحصیلی مرتبط: پزشکی، داروسازی، شیمی
گرایش های تحصیلی مرتبط: نانو فناوری دارویی، خون و انکولوژی، شیمی دارویی، نانو شیمی، داروشناسی، نانو فناوری پزشکی، پزشکی مولکولی
کلمات کلیدی فارسی: درمان هدفمند سرطان، پاسخ-دو جانبه ای-ردوکس/پی اچ، نانوذرات سیلیس مزوپور
کلمات کلیدی انگلیسی: Targeted cancer therapy، PH/redox-dual-responsive، Mesoporous silica nanoparticle
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ijbiomac.2019.12.265
دانشگاه: Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4/939 در سال 2019
شاخص H_index: 101 در سال 2020
شاخص SJR: 0/962 در سال 2019
شناسه ISSN: 0141-8130
شاخص Quartile (چارک): Q3 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14907
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Experimental section

3- Results and discussion

4- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

In this paper, a targeting hyaluronic acid (HA)/mesoporous silica nanoparticle (MSN) based drug delivery system (DDS) with dual-responsiveness was prepared for cancer therapy. To avoid the side reaction between the anti-cancer drug doxorubicin hydrochloride (DOX) and HA, host-guest interaction was applied to fabricate the DDS named DOX@MSN-SS-N=C-HA. The “nanocontainer” MSN was modified with benzene ring via both pH-sensitive benzoic imine bond and redox-sensitive disulfide linkage. When DOX was loaded in the pores of MSN, the channels were then capped by the “gatekeeper” β-CD grafted HA (HA-g-CD) through host-guest interaction between β-CD and benzene. HA endowed the drug carriers with the targeting capability in CD44 over-expressed cancer cells. After cellular uptake, the carriers could rapidly release DOX for cell apoptosis due to both the hydrolysis of benzoic imine bond at low pH and the cleavage of disulfide bond at a high concentration of glutathione (GSH) intracellular. In vitro drug release studies and in vitro cytotoxicity studies were taken to investigate the dual-responsiveness of the carriers. And the CD44-receptor mediated cancer cell targeting capability was investigated as well. In conclusion, the targeted dual-responsive complex DDS fabricated through host-guest interaction has promising potential in cancer therapy.

Introduction

Chemotherapy remains one of the major therapeutic approaches applied to treat cancer in clinic. However, the disadvantages of traditional chemotherapeutic drugs such as unfavorable pharmacokinetics, poor biodistribution and lack of selectivity for target tissues reduce the utilization of the drugs and cause serious side effects [1]. To tackle these problems, anti-cancer drug delivery systems (DDSs) based on nanotechnology have been introduced and developed rapidly in recent decades [1–4]. DDSs such as liposomal daunorubicin (DaunoXome), pegylated liposomal doxorubicin (Doxil), albumin nanoparticle based Nan-paclitaxel (Abraxane) and polymeric micelle paclitaxel (GenexolPM) have already been approved for clinical treatment of cancer [3,4]. These nanosized DDSs can be accumulated in tumor tissues more easily via enhanced permeability and retention (EPR) effect to improve the pharmacokinetics and biodistribution of the drugs, as well as to reduce their side effects [5]. Though the commercial DDSs represented by the liposomal doxorubicin can overcome part of the shortcomings of traditional anticancer drugs, they cannot or only modestly improve patients' overall survival [3,6–9]. Therefore, more efforts are needed to develop novel advanced DDSs. The properties including controlled drug release based on stimuli- sensitivity [10,11] and ligand-mediated active cancer targeting [12–15] introduced make the newly reported DDSs with better therapeutic effects [1–4]. During the past decade, mesoporous silica nanoparticle (MSN) based DDSs have attracted considerable attention from scientists worldwide [16,17]. MSNs can be simply synthesized with tunable size, shape, pore size and volume [17,18], and are easy surface functionalization [16]. These advantages, as well as the high drug loading capacity and good biocompatibility, ensure that MSNs are excellent choices for designing safe and efficient drug carriers [16–18].