تعیین خصوصیات پیوند FRP
ترجمه نشده

تعیین خصوصیات پیوند FRP

عنوان فارسی مقاله: تعیین خصوصیات پیوند FRP به FRP و مدل طول باند مبتنی بر نیرو
عنوان انگلیسی مقاله: FRP-to-FRP bond characterization and force-based bond length model
مجله/کنفرانس: ساختارهای کامپوزیتی – Composite Structures
رشته های تحصیلی مرتبط: مهندسی عمران، مهندسی مواد، مهندسی پلیمر
گرایش های تحصیلی مرتبط: سازه، مهندسی مواد مرکب یا کامپوزیت
کلمات کلیدی فارسی: پلیمر تقویت شده با الیاف، تقویت، طول باند، گسیختگی، اتصال FRP، اتصال لبه FRP
کلمات کلیدی انگلیسی: FRP، Strengthening، Bond length، Debonding، FRP anchor، FRP lap joint
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.compstruct.2018.12.005
دانشگاه: Dept. of Civil and Environmental Engineering, The University of Auckland, New Zealand
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 5.306 در سال 2019
شاخص H_index: 130 در سال 2020
شاخص SJR: 1.967 در سال 2019
شناسه ISSN: 0263-8223
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14962
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Nomenclature

۱٫ Introduction

۲٫ Experimental program

۳٫ Results

۴٫ Design models

۵٫ Conclusions and recommendations

Acknowledgements

Supplementary data

Research Data

References

بخشی از مقاله (انگلیسی)

Abstract

Fiber Reinforced Polymer (FRP) anchors are an effective method to increase the bond strength and/or ensure load path continuity between FRP materials and the concrete substrate when FRP materials are used as Externally Bonded Reinforcement (EBR) to strengthen and/or repair existing structures. While advances in developing a design methodology have been made on the fiber rupture and concrete cone failure modes for FRP anchors, the FRP-to-FRP bond behavior has received limited research attention. In an effort to develop design equations to calculate FRP-to-FRP bond capacity to be used by engineers, an extensive experimental program was undertaken to characterize the behavior of adhesively bonded FRP-to-FRP lap joints. Two force-based models to calculate the FRP-to-FRP bond capacity were proposed considering the influence of the critical bond length on lap joint behavior. A study to characterize the statistical properties of the experimental data was undertaken, and 95 and 99.87 percentile models were developed based on the statistical distribution of the experimental data set. Main conclusions inferred from the study and ideas for future work are also presented.

Introduction

Externally Bonded Fiber Reinforced Polymer (EBR-FRP) systems are widely used as a method for strengthening of existing structures. FRP materials feature a high strength to weight ratio, which is one of the main advantages of using FRP materials to improve the capacity of existing structures. FRP sheets, consisting of a varying number of fiber tows interweaved together, are one of the most commonly used products in EBR-FRP systems. The sheets are saturated with epoxy resins to form a composite matrix and then adhered to the external surface of the structure, but premature debonding of the FRP sheets from the concrete substrate is one of the main drawbacks of EBR-FRP systems [1]. Another common problem is the obstructions caused by structural or nonstructural elements that prevent the complete wrapping of the structure. Both of these problems limit the FRP design strain that the engineers can use when implementing EBR-FRP systems. The use of FRP anchors has been identified as one possible method to minimize premature FRP-to-concrete debonding [2,3], by transferring load from the FRP sheet directly into the RC structure. FRP anchors (as shown in Fig. 1 [4]) consist of a bundle of fibers splayed in a fan shape and bonded onto the FRP sheet at one end, with the bundle of fibers being embedded into the structure at the other end. FRP anchors typically feature a high concentration of stresses at the section where the fan transitions into the dowel, commonly known as the key portion of the anchor.