اثر بازده حذف بر آلودگی ازن منطقه ای از نفت، گاز
ترجمه نشده

اثر بازده حذف بر آلودگی ازن منطقه ای از نفت، گاز

عنوان فارسی مقاله: اثر بازده حذف و اتلاف شعله بر آلودگی ازن منطقه ای از نفت، گاز و صنایع فرآیند شیمیایی در جنوب شرقی تگزاس از طریق مدل سازی و شبیه سازی CAMx
عنوان انگلیسی مقاله: Effect of Flare destruction and removal efficiencies on regional ozone pollution from oil, gas and chemical process industries in Southeast of Texas through CAMx modeling and simulation
مجله/کنفرانس: محیط جوی – Atmospheric Environment
رشته های تحصیلی مرتبط: مهندسی شیمی، شیمی، محیط زیست، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: پتروشیمی، شیمی محیط زیست، آلودگی های محیط زیست، آلودگی هوا، مهندسی نرم افزار
کلمات کلیدی فارسی: آلودگی ازن، انتشار گازهای گلخانه ای، گازهای گلخانه ای، DRE ،CAMx
کلمات کلیدی انگلیسی: Ozone pollution، Industrial emissions، Flare، DRE، CAMx
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.atmosenv.2020.117326
دانشگاه: Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX, 77710, USA
صفحات مقاله انگلیسی: 36
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4.460 در سال 2019
شاخص H_index: 226 در سال 2020
شاخص SJR: 1.305 در سال 2019
شناسه ISSN: 1352-2310
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E15045
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Graphical abstract

Keywords

1. Introduction

2. Problem statement

3. Methodology

4. Case studies

5. Conclusions

 Appendix A. Supplementary data

Nomenclature

References

بخشی از مقاله (انگلیسی)

Abstract

Flare is the last safety measure for daily operations in oil, gas & chemical process industries (OGCPI). However, an excessive flaring releases large quantity of emissions of VOCs and NOx, which may suddenly enhance local ozone as a secondary pollution. Normally, the flare destruction and removal efficiency (DRE) of 98% or 99% is regulated as the national standard and presumed for industrial practices in the U.S. Unfortunately, real DRE values could be much lower than the standard due to impact factors including various meteorological and operating conditions such as the cross-wind speed, flare jet velocity and heating value of combustion. Thus, it is critically important to explore the sensitivity of the regional ozone impact due to low DREs of OGCPI flare combustions. In this paper, a systematic methodology has been developed to examine ozone impacts due to the low flare DREs, which have never been systematically studied before. The DRE formulas were derived from computational fluid dynamic (CFD) modeling and Water Environment Research Foundation (WERF) results and then employed to recompile the point source emission inventory. After that, comprehensive air quality model with extensions (CAMx) was employede to simulate and quantify local ozone changes impacted by flare emissions of OGCPI. Case studies indicate that the maximum hourly ozone increments due to the low DRE through CFD and WERF modeling is 0.18 ppb and 1.3 ppb, respectively. This study could enrich fundamental understandings of industrial point source emissions and provide the quantitative and valuable support for the ozone pollution caused by OGCPI flare emissions under low DRE instead of standard values.

Introduction

Industrial flaring is to safely combust off-spec, unusable, or unwanted process streams, which might otherwise be harmful to local environment if directly vented without destructions. The oil, gas and chemical process industries (OGCPI) in the U.S. daily processes millions of cubic feet of hydrocarbon gases (Baukal and Schwartz, 2001; Aalsalem et al., 2018). Thus, a slight decrease in flaring performance will release millions of cubic feet of gaseous emissions into the atmospheric environment. Note that although flaring is a safety measure for plant safety in OGCPI, excessive flaring will generate large amounts of emissions such as NOx (nitrogen oxides), CO2, CO, VOCs (volatile organic compounds) especially for high reactive VOCs (i.e., HRVOCs such as ethylene, propylene, acetylene). For instance, an olefin plant with a capacity of 1.2 billion pounds of ethylene productivity per year can easily flare about 5.0 million pounds of ethylene during one single start-up 50 operation (Xu and Li, 2008).