دانلود مقاله تاثیر اکسید گرافن بر خوردگی و خواص نانوکامپوزیت پایه منیزیم
ترجمه نشده

دانلود مقاله تاثیر اکسید گرافن بر خوردگی و خواص نانوکامپوزیت پایه منیزیم

عنوان فارسی مقاله: تاثیر اکسید گرافن بر خوردگی، خواص مکانیکی و بیولوژیکی نانوکامپوزیت بر پایه منیزیم
عنوان انگلیسی مقاله: Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite
مجله/کنفرانس: مجله بین المللی مواد معدنی، متالورژی و مواد - International Journal of Minerals, Metallurgy and Materials
رشته های تحصیلی مرتبط: مهندسی مواد - شیمی
گرایش های تحصیلی مرتبط: مهندسی مواد مرکب - خوردگی و حفاظت مواد - نانو مواد - شیمی آلی - شیمی پلیمری
کلمات کلیدی فارسی: نانوکامپوزیت بر پایه منیزیم - اکسید گرافن - روش متالورژی پودر - خاصیت مکانیکی - فعالیت ضد باکتریایی - زیست سازگاری
کلمات کلیدی انگلیسی: magnesium-based nanocomposite - graphene oxide - powder metallurgy method - mechanical property - antibacterial activity - biocompatibility
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: JCR - Master Journal List - Scopus
شناسه دیجیتال (DOI): https://doi.org/10.1007/s12613-020-2201-2
نویسندگان: Saeid Jabbarzare - Hamid Reza Bakhsheshi-Rad - Amir Abbas Nourbakhsh - Tahmineh Ahmadi - Filippo Berto
دانشگاه: Department of Materials Science, Shahreza Branch, Islamic Azad University, Iran
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2022
ایمپکت فاکتور: 3.628 در سال 2020
شاخص H_index: 42 در سال 2022
شاخص SJR: 0.607 در سال 2020
شناسه ISSN: 1869-103X
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: pdf
تعداد صفحات مقاله انگلیسی: 15
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: e16646
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (ترجمه)

چکیده


1. مقدمه


2. آزمایشی


3. نتایج و بحث


4. نتیجه گیری


منابع

فهرست مطالب (انگلیسی)

Abstract


1. Introduction


2. Experimental


3. Results and discussion


4. Conclusion


Conflict of Interest


Supplementary Information


References

بخشی از مقاله (ترجمه ماشینی)

چکیده


     این مطالعه به بررسی اثر اکسید گرافن (GO) بر رفتار مکانیکی و خوردگی، عملکرد ضد باکتریایی و پاسخ سلولی نانوکامپوزیت Mg-Zn-Mn (MZM) می‌پردازد. نانوکامپوزیت‌های MZM/GO با مقادیر مختلف GO (یعنی 0.5 وزنی، 1.0 وزنی، و 1.5 وزنی درصد) به روش متالورژی نیمه پودری ساخته شدند. تأثیر GO بر روی نانوکامپوزیت MZM از طریق آزمون‌های سختی، فشاری، خوردگی، ضد باکتریایی و سمیت سلولی مورد تجزیه و تحلیل قرار گرفت. نتایج تجربی نشان داد که با افزایش مقدار GO (5/0 درصد وزنی و 5/1 درصد وزنی درصد)، مقدار سختی، مقاومت فشاری و عملکرد ضدباکتریایی نانوکامپوزیت MZM افزایش یافت، در حالی که زنده‌مانی سلول و سطح استخوان‌زایی پس از کاهش یافت. افزودن 1.5 درصد وزنی GO. علاوه بر این، نتایج بررسی الکتروشیمیایی نشان داد که رفتار خوردگی آلیاژ MZM پس از کپسوله‌سازی در 0.5 درصد وزنی GO به طور قابل‌توجهی افزایش یافت. به طور خلاصه، نانوکامپوزیت‌های MZM تقویت‌شده با GO می‌توانند برای کاربردهای ایمپلنت به دلیل عملکرد ضدباکتریایی و خاصیت مکانیکی‌شان استفاده شوند.


توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.

بخشی از مقاله (انگلیسی)

Abstract


     This study investigates the effect of graphene oxide (GO) on the mechanical and corrosion behavior, antibacterial performance, and cell response of Mg—Zn—Mn (MZM) nanocomposite. MZM/GO nanocomposites with different amounts of GO (i.e., 0.5wt%, 1.0wt%, and 1.5wt%) were fabricated by the semi-powder metallurgy method. The influence of GO on the MZM nanocomposite was analyzed through the hardness, compressive, corrosion, antibacterial, and cytotoxicity tests. The experimental results showed that, with the increase in the amount of GO (0.5wt% and 1.5wt%), the hardness value, compressive strength, and antibacterial performance of the MZM nanocomposite increased, whereas the cell viability and osteogenesis level decreased after the addition of 1.5wt% GO. Moreover, the electrochemical examination results showed that the corrosion behavior of the MZM alloy was significantly enhanced after encapsulation in 0.5wt% GO. In summary, MZM nanocomposites reinforced with GO can be used for implant applications because of their antibacterial performance and mechanical property.


Introduction


     Currently, because magnesium (Mg) alloys have more benefits than common metallic materials, ceramics, and biodegradable polymers, their biomedical applications have been increasing. In terms of mechanical features, metals have higher mechanical strength and fracture toughness than ceramics or polymers; thus, metals are more appropriate for load-bearing usages than ceramics or polymers [1–2]. The density of human cortical bone (1.75 g/cm3 ) is similar to the density of Mg (1.738 g/cm3 ) and Mg alloys (1.75–1.85 g/cm3 ) but lower than the density of biomedical titanium alloy Ti6Al4V (4.47 g/cm3 ) [3–4]. In terms of biocompatibility, certain amounts of Mg ions in the human body are connected with many metabolic reactions and biological mechanisms [5–6]. Mg alloys are suitable orthopedic and cardiovascular implants because further surgery to remove them is not needed [7–8]. However, an important drawback of Mgbased implants is that they do not have good resistance against corrosion in physiological environments [9]. Mechanical strength could be significantly reduced by rapid and uncontrollable corrosion processes, which leads to premature failure [10]. Moreover, the health of patients who have such implants could be at risk because of the evolution of hydrogen gas and alkalinization of the environments close to the interface between implant and tissue [11]. Therefore, to achieve the secure deployment of biomedical devices, the degradation/corrosion rate of Mg alloys needs to be controlled [12]. In this context, several methods, such as alloying, powder metallurgy (PM), and surface modification strategies, have been used in an extensive number of studies that aimed to solve the problem of corrosion in Mg alloys [13–14]. Among the best methods to enhance the corrosion resistance of porous Mg are PM processes, such as mechanical alloying [15–17].


Conclusion


     In this study, using the semi-powder metallurgy method, different contents of GO were embedded in the Mg–Zn–Mn (MZM) matrix to prepare MZM/xGO nanocomposites for orthopedic applications. The corrosion performance and the 24 20 16 12 8 4 0 0 −0.5 −1.0 −1.5 −2.0 Extension / mm MZM/GO Graphene oxide Graphene oxide Graphene oxide Graphene oxide Crack Crack (a) (c) 1.5GO 0.5GO 1GO MZM (b) MZM composite MZM/0.5GO MZM/1GO MZM/1.5GO 49 59 63 64 Compression strength / N 4820 17810 19960 9620 1.12 1.31 1.44 0.72 Force / (10 3 N) Micro hardness, HV Extension / mm Material nanocomposite Fig. 10.    (a) Typical compressive curves and (b) hardness and compressive strength values of the MZM/xGO nanocomposites; (c) schematic diagram of the crack deflection toughening mechanisms of GO in the MZM/xGO nanocomposites. S. Jabbarzare et al., Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based ... 317 mechanical and biological characteristics of the MZM/xGO nanocomposites were analyzed. The microstructural assessment showed that a uniform distribution was achieved in the MZM/0.5GO and MZM/1GO nanocomposite specimens. However, agglomeration was observed in the MZM/1.5GO nanocomposite specimen. The results showed that the GO content, hardness value, and compressive strength are positively associated. In this context, the MZM/1GO nanocomposite has higher hardness value and compressive strength than the Mg-based nanocomposite without GO. The MZM/ 0.5GO nanocomposite exhibited a nearly comparable corrosion resistance to the MZM/1GO nanocomposite, even though the incorporation of more GO has an unfavorable effect on the Rct value of the MZM matrix. The MTT assay results showed that the MZM/1GO nanocomposite increased the MG63 cell viability and ALP activity, indicating the increasing level of osteogenesis. The results of the analysis of antibacterial activity showed that the MZM/1.5GO nanocomposite had a noticeable effect on antibacterial effectiveness toward bacteria, including Salmonella–Shigella and Klebsiella pneumoniae. In summary, the results indicate the possibility of utilizing the MZM/1GO nanocomposite for implant applications with effective anti-infection characteristics.

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است