خلاصه
1. مقدمه
2. جزئیات تجربی
3. نتایج و بحث
4. نتیجه گیری
اختصارات
در دسترس بودن داده ها
امتیازات اضافی
مشارکت نویسندگان
قدردانی
مواد تکمیلی
منابع
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusion
Abbreviations
Data Availability
Additional Points
Authors’ Contributions
Acknowledgments
Supplementary Materials
References
چکیده
سنتز و خصوصیات پلی اورتان جدید مبتنی بر پلی بوتادین، نانوذرات گرافن نقطه کوانتومی-MnO2، و نانوکامپوزیت های نسبی به عنوان هدف کار هنری فعلی تعیین شد. برای این منظور از روش پلیمریزاسیون یک گلدانی در تهیه پلی یورتان از طریق واکنش آمین پلیول و تولوئن دی ایزوسیانات (TDI) در حضور کاتالیزور DBTDL استفاده شد. نانوکامپوزیت ها با استفاده از ترکیب 1 تا 3 درصد نانوذرات گرافن نقطه کوانتومی-MnO2 در ماتریس پلیمری سنتز شدند. طیفسنجیهای 1H-NMR و FT-IR سنتز موفقیتآمیز محصولات واکنش شامل نقطه کوانتومی گرافن -MnO2، پلیاورتان و نانوکامپوزیتها را تایید کردند. برای دستیابی به اطلاعات نوری نمونه ها از تکنیک های اسپکتروفتومتری UV-vis و PL استفاده شد. خواص نوری نانوکامپوزیت ها به درستی و بدون خاموش شدن زیاد حفظ شد. پایداری حرارتی، نرخ تخریب و ویژگیهای حرارتی پلیاورتان و نانوکامپوزیتها با استفاده از آنالیز TGA/DTG و DSC مورد بررسی قرار گرفت. پایداری حرارتی رابطه مستقیمی با محتوای نانوذرات نشان داد و نانوکامپوزیت 3 درصد وزنی در مقایسه با PU خالص رفتار حرارتی بهبود یافته ای را نشان داد. تکنیکهای SEM، XRD و AFM سنتز نانوکامپوزیت موفقی را با شناسایی گونههای نانوذرات و پراکندگی نانوذرات ریز با ویژگیهای توپوگرافی و مورفولوژیکی بهبود یافته نشان دادند که نانوکامپوزیتهای پلیاورتان GQD-MnO2 را کاندید خوبی برای استفاده در پوششهای فعال نوری و پوششهای پایدار حرارتی کردند.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
Synthesis and characterization of new polybutadiene-based polyurethane, graphene quantum dot-MnO2 nanoparticles, and relative nanocomposites were set as the aim of current artwork. For this purpose, a one-pot polymerization approach was employed in preparation of polyurethane through the reaction of amine polyol and toluene diisocyanate (TDI) in presence of DBTDL catalyst. Nanocomposites were synthesized using 1 to 3 incorporation percent of graphene quantum dot-MnO2 nanoparticles in polymer matrix. 1H-NMR and FT-IR spectroscopies confirmed successful synthesis of reaction products including graphene quantum dot-MnO2, polyurethane, and nanocomposites. UV-vis and PL spectrophotometry techniques were applied for achieving optical information of samples. Optical properties of nanocomposites were reserved properly with no great quenching. Thermal stabilities, degradation rates, and thermal characteristics of polyurethane and nanocomposites were investigated using TGA/DTG and DSC analysis. Thermal stability showed direct relationship to nanoparticle content, and 3%wt nanocomposite showed improved thermal behaviour in comparison with pure PU. SEM, XRD, and AFM techniques proved successful nanocomposite synthesis with detecting nanoparticle species and fine nanoparticle dispersion with improved topographic and morphologic characteristics making GQD-MnO2 polyurethane nanocomposites a good candidate for using in optical active and thermal stable coatings.
Introduction
At a time when socioenvironmental problems of polluting industries are the focus of legislators, the general trend is toward the production of new products from recycled materials, especially waste materials. In the case of polybutadiene, because of most usage in tire production in crosslinked form with sulfur or carbon dioxide, it does not seem so reasonable to pay attention on polybutadiene recycling, at least until recognition of successful separation approaches. However, crude polybutadiene itself faced some issues of processability like high molecular weight, high viscosity, low solubility, and high molding that can be solved for usage in wide speared areas with chain modification [1–4].
Based on a common belief in green chemistry, it is much more beneficial to produce high-performance polymers form existing low-use ones than new starting monomers. With this respect, chemical modification of polybutadiene chain could make possible goals like raising polymer applications, introducing high-performance polymers, and preventing overproduction of new polymers with optimistic perspective to polybutadiene recycling [5, 6].
Double-bond scission of polybutadiene chain usually occurs through chain oxidation using hydrogen peroxide, metachloroperbenzoic acid, and dimethyl dioxirane. The molecular weight could be engineered by peracid/double-bond unit ratio [7, 8]. Carbonyl functionalized polybutadiene derived from chain cutting down process is an attractive procedure for polyurea and polyurethane synthesis [9, 10].
Conclusion
At the beginning of this research, graphene quantum dot was successfully prepared by hydrothermal method and coprecipitation approach in order to have GQD-MnO2 nanoparticle synthesis. GQD and GQD-MnO2 nanoparticle accurate synthesis approved by FT-IR spectroscopy, and optical properties of nanoparticles were investigated with UV-vis and PL techniques. In the following, PU-GQD-MnO2 nanocomposite was prepared through an in situ polymerization reaction of synthesized polyol and TDI diisocyanate in presence of different GQD-MnO2 nanoparticle percent. PU-GQD-MnO2 nanocomposite synthesis was confirmed using FT-IR technique. Also, it was resulted from UV-vis and PL analysis that nanocomposites excellently reserved their optical characteristics. Thermal property improvement of nanocomposites was observed using TGA/DTG and DSC methods. Finally, SEM, XRD, and AFM investigations resulted satisfying nanocomposite synthesis, fine nanoparticle distribution, and morphologic and topographic property improvement in nanocomposites in comparison with pure PU.