خلاصه
1. معرفی
2. فرمولاسیون هماهنگی رله و ویژگی های جدید رله
3. نتایج شبیه سازی و تنظیمات به دست آمده
4. تحلیل تطبیقی
5. نتیجه گیری
بیانیه مشارکت نویسنده CRediT
اعلامیه منافع رقابتی
در دسترس بودن داده ها
منابع
Abstract
1. Introduction
2. Proposed relay coordination formulation and novel relay characteristics
3. Simulation results and obtained settings
4. Comparative analysis
5. Conclusion
CRediT authorship contribution statement
Declaration of competing interest
Data availability
References
چکیده
یک منحنی مشخصه معکوس مبتنی بر زمان-جریان جدید برای رلهها در یک ریزشبکه DC در این مقاله پیشنهاد شدهاست. نرخ افزایش جریان خط به عنوان کمیت فعال کننده استفاده می شود و از پاک کردن سریع خطای خط اطمینان می دهد (زمان کار رله به ترتیب چند میکرو ثانیه است). مزیت استفاده از نرخ افزایش جریان خط به عنوان کمیت محرک این است که برای یک خطای اتصال کوتاه خط، برای حالتهای عملیات متصل به شبکه و جزیرهای و توپولوژیهای مختلف شبکه ریزشبکه DC تفاوت قابلتوجهی ندارد. در نتیجه، با استفاده از مشخصه پیشنهادی، یک مجموعه واحد از تنظیمات رله بهینه با استفاده از حل کننده بهینه سازی در متلب به دست می آید. تنظیمات بهدستآمده، هماهنگی قابل اعتماد و انتخابی بین رلههای اولیه و پشتیبان را برای خطاهای مختلف خط قطب به زمین و قطب در شرایط عملیاتی مختلف با منابع متعدد در دو ریزشبکه 4 باس 400 ولت DC ولتاژ پایین تضمین میکند. حداکثر زمان کار رله برای خطای مقاومت بالا با منحنی پیشنهادی 394.9 میکروثانیه برای اولین ریزشبکه DC ولتاژ پایین در نظر گرفته شده است. شبیهسازیها در شبیهساز دیجیتال Real Time و مقایسه با طرحهای قبلی (یک مقایسه در ریزشبکه DC دوم)، منحنیهای معکوس استاندارد معمولی و بسیار معکوس برای حفاظت ریزشبکه DC نشاندهنده اثربخشی طرح پیشنهادی است.
Abstract
A novel time–current-rate-based inverse characteristic curve for relays in a DC microgrid is proposed in this paper. Line current rise rate is used as actuating quantity, ensuring quick line fault clearing (relay operating time is in order of a few . The advantage of using line current rise rate as actuating quantity is that for a line short-circuit fault, it does not vary significantly for grid-connected and islanded modes of operation and varying network topologies of DC microgrid. Consequently, using the proposed characteristic, a single set of optimal relay settings is obtained using an optimization solver in MATLAB. The obtained settings ensure reliable and selective coordination between primary and backup relays for various pole-to-ground and pole-to-pole line faults under different operating conditions with multiple sources in two different 4-bus 400V low voltage DC microgrids. The maximum relay operating time for a high resistance fault with the proposed curve is for the first considered low voltage DC microgrid. Simulations in the Real Time Digital Simulator and comparisons with previous schemes (one comparison on the second considered DC microgrid), conventional standard inverse, and extremely inverse curves for DC microgrid protection indicate the effectiveness of the proposed scheme.
Introduction
The ease of integration of solar Photo-Voltaic (PV) and Battery Energy Storage Systems (BESSs) based renewable energy resources in a DC microgrid, compared to an AC microgrid, has led to the increased expansion and research interest of DC microgrids over AC microgrids [1], [2]. Also, DC microgrid can be a great way to power remote towns, shipboards, spaceships, and grids with sensitive loads, where the quality of power is crucial [3], [4]. However, the rate of rise of current is very high in a DC microgrid during a line fault due to the rapid discharge of the DC link capacitor and the associated low line impedance [5]. Hence, in general, the DC microgrid protection schemes follow a three-time frame based protection methodology in which the protection of the line, feeder, and the source should be done within a few milliseconds, and seconds, respectively [6]. Several DC Circuit Breakers (CBs) have been developed to support the quick isolation of lines during a fault in a DC microgrid, among which the solid-state CBs have a response time in the range of a few
Conclusion
This paper proposes a novel inverse time relay characteristic for the protection of DC microgrids against line faults using line current rise rate as an actuating quantity. It can coordinate relays in a DC microgrid with non-unit fault detection schemes or act as a backup scheme for relays with communication-based primary method. The relay coordination using the proposed characteristic is tested on a V LVDC microgrid. A single set of optimal relay settings ( and ) and a common set of values of and in (8) are obtained, considering all possible modes of operation, network configurations, and worst-case PG, PP LRFs and PG HRFs. Consequently, the proposed approach does not require an online update of and with a change in operating condition of DC microgrid. The efficacy of the proposed curve is validated with the obtained optimal unique relay settings for various PG, PP LRFs, PG HRFs for GC, islanded modes of operation, ring, radial network configurations, and intermittency of generation from renewable energy sources. Zero relay miscoordinations with a maximum primary relay operating time with the proposed curve are and for LRF and HRF faults, respectively, proving the effectiveness of the proposed technique in LVDC microgrid.
Further, the issues of using SI and EI curves to coordinate relays in a LVDC microgrid using line current and line current rise rate as actuating quantity and issues with using line current as actuating quantity in proposed scheme are discussed. It is observed that the conventional EI curve with line current rise rate may be used for relay coordination in DC microgrid. However, the high relay operating time (maximum primary relay operating time being ) may lead to prolonged line fault isolation. Additionally, the proposed scheme is fast and reliable, compared to EI curves, since the sum of primary relay operating times, considering all fault scenarios, is with the proposed curve, compared to the EI curve, which gives . The comparison with [16], [17] reveals the efficacy of the proposed scheme with the relay operating times in the proposed scheme being in the range of a few for line faults in LVDC microgrid.