دانلود مقاله کنترل توان راکتیو ریزشبکه ها
ترجمه نشده

دانلود مقاله کنترل توان راکتیو ریزشبکه ها

عنوان فارسی مقاله: کنترل توان راکتیو ریزشبکه ها با استفاده از FOSMC برای پیروی از کد شبکه در طول فلش ولتاژ نامتقارن
عنوان انگلیسی مقاله: Reactive power control of micro-grids using FOSMC for grid code compliance during asymmetrical voltage sags
مجله/کنفرانس: تحقیقات سیستم های قدرت الکتریکی - Electric Power Systems Research
رشته های تحصیلی مرتبط: برق
گرایش های تحصیلی مرتبط: برق قدرت - مهندسی کنترل
کلمات کلیدی فارسی: فلش ولتاژ نامتقارن، سیستم چهار سیمه، ترتیب کسری SMC، گذار از ولتاژ پایین (LVRT)، ریز شبکه، اشتراک گذاری توان راکتیو
کلمات کلیدی انگلیسی: Asymmetrical voltage sags, Four-wire system, Fractional-order SMC, LVRT, Micro-grid, Reactive power-sharing
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.epsr.2023.110056
لینک سایت مرجع: https://www.sciencedirect.com/science/article/pii/S0378779623009446
نویسندگان: Reza Deihimi Kordkandi - Mehrdad Tarafdar Hagh - Sam Roozbehani - Mojtaba Feyzi - Navid Bayati - Thomas Ebel
دانشگاه: University of Tabriz, Tabriz, Iran
صفحات مقاله انگلیسی: 13
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2024
ایمپکت فاکتور: 4.201 در سال 2022
شاخص H_index: 146 در سال 2024
شاخص SJR: 1.029 در سال 2022
شناسه ISSN: 0378-7796
شاخص Quartile (چارک): Q1 در سال 2022
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: e17705
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (ترجمه)

خلاصه
1. معرفی
2. تجزیه و تحلیل توالی در شرایط معیوب
3. کنترل توان راکتیو پیشنهادی MGs در شرایط LVRT
4. شبیه سازی و نتایج بلادرنگ
5. نتیجه گیری
بیانیه نویسنده CRediT
اعلامیه منافع رقابتی
در دسترس بودن داده ها
منابع

فهرست مطالب (انگلیسی)

Abstract
1. Introduction
2. Sequence analysis during faulty conditions
3. Proposed reactive power control of MGs during LVRT condition
4. Simulation and real-time results
5. Conclusion
CRediT author statement
Declaration of competing interest
Data availability
References

بخشی از مقاله (ترجمه ماشینی)

چکیده
استفاده از ریزشبکه ها (MGs) به عنوان راه حلی برای سیستم های انرژی آینده به طور قابل توجهی در سال های اخیر افزایش یافته است. از سوی دیگر، الزامات سخت گیرانه تری به کدهای شبکه (GCs) شبکه های توزیع ولتاژ پایین اضافه می شود. بر این اساس، این مقاله یک طرح کنترلی با ولتاژ پایین (LVRT) برای MGهای چند منبع چهار سیمه پیشنهاد می‌کند. استراتژی جدید از دو لایه برای کنترل هر فاز از منابع متصل به شبکه به طور مستقل تشکیل شده است. لایه اولیه شامل یک تابع افت معکوس برای هر فاز و کنترل حالت لغزشی مرتبه کسری (FOSMC) است. لایه ثانویه کل توان راکتیو درخواستی را برای هر فاز در طول افت ولتاژ متقارن و نامتقارن تعیین می کند. سپس توان ذکر شده بر اساس استراتژی اشتراک توان راکتیو و الزامات GC بین فازهای هر اینورتر تقسیم می شود. بر اساس کنترل‌کننده شبکه پیشنهادی، ولتاژ فازهای معیوب با تزریق توان راکتیو جبران می‌شود. علاوه بر این، شاخص های کیفیت توان در طول ناهنجاری ها در محدوده قابل قبولی نگه داشته می شوند و FOSMC بهتر از روش های معمولی عمل می کند. اثربخشی طرح پیشنهادی از طریق شبیه‌سازی آفلاین در MATLAB/Simulink و همچنین اعتبارسنجی با نتایج بلادرنگ تأیید می‌شود.

بخشی از مقاله (انگلیسی)

Abstract

Application of micro-grids (MGs) as a solution for future energy systems are significantly increasing in recent years. On the other hand, more stringent requirements are added to grid codes (GCs) of low-voltage distribution networks. Accordingly, this paper proposes a low-voltage ride-through (LVRT) control scheme for four-wire multi-source MGs. The novel strategy is composed of two layers for controlling each phase of the grid-connected sources independently. The primary layer contains a reverse-droop function for each phase and fractional-order sliding-mode-control (FOSMC). The secondary layer determines the total requested reactive power for each phase during symmetrical and asymmetrical voltage drops. Then, the mentioned power is shared among the phases of each inverter based on the reactive power-sharing strategy and GC requirements. Based on the proposed grid-following controller, the voltage of faulty phases is compensated by reactive power injection. In addition, power quality indexes are kept in acceptable ranges during abnormalities, and the FOSMC performs better than the conventional methods. The effectiveness of the proposed scheme is verified through offline simulations in MATLAB/Simulink as well as validation by real-time results.

 

Introduction

1.1. Background
The utilization of small-scale distributed energy resources (DERs) in low and medium-voltage networks is increasing, and as a result, their sudden and collective disconnection from the power system might cause voltage collapse on the grid during severe voltage perturbations. Therefore, the severe impact of the DERs cannot be ignored since their contribution to the power supply is considerable. Thus, the incremental usage of DER systems has become leverage for setting new requirements for power systems. These regulations are called grid codes (GCs), which vary from country to country and cover some grid-connected power sources such as wind turbines and photovoltaic (PV) systems [1]. The mentioned regulations force the sources to stay connected to the main grid during temporary voltage sags and support it by injecting reactive current. An essential requirement of the GC, which has gained much attraction in recent studies, is the low-voltage ride-through (LVRT) capability of the distributed generators (DGs). LVRT curves of the German and Danish GCs are highlighted in Fig. 1a [2]. Besides, in Fig. 1b amount of the reactive power injection per voltage drop is depicted for different scenarios [3]. Most studies cover symmetrical voltage disturbances that only include a minor percentage of the faults such as [4,5], etc. However, asymmetrical faults such as single-phase short-circuits are more probable with an 85 % occurrence rate [6]. In most cases, the conventional three-phase control methods for compensating voltage drops are not applicable for asymmetrical faults since they might affect the operation of safe phases by deteriorating voltage imbalance. Also, reactive power-sharing and reference power tracking in multi-source MGs are important operation factors, which has not been addressed sufficiently in previous studies.

 

Conclusion

MGs integration into power systems has boosted the system's reliability and caused operational challenges for the network operators. Hence, some countries have considered a set of requirements to improve the functionality of their power systems. For this purpose, in this paper, an LVRT scheme is proposed for four-wire MGs, which can control each phase of the DGs independently through a grid-following method. The local controller of the DGs, known as the primary layer, utilizes reverse-droop control for voltage and frequency regulation and a nonlinear FOSMC. On the other hand, the secondary layer fulfills the modern GC requirements by calculating the required reactive power for the faulty phases. Next, this amount is shared between the corresponding phases of the DGs based on their free capacity. The effectiveness of the presented controller is proved by analyzing the results obtained from implementing 30 % single-phase, two-phase, and three-phase voltage sags. Accordingly, each DG phase injects reactive power during voltage sags according to the determined amount. Also, comparing the injected reactive power with the amounts of German GC demonstrates that the reactive power injection is done with acceptable accuracy. The results point out that during the external sags, the voltage of PCC, inverter terminals, and load terminals are restored to their nominal values, 30 % compensation, as if there is no perturbation. Consequently, the presented controller can realize the GC requirements and ride through during severe voltage conditions. Moreover, this control method keeps the power quality indices like THD and voltage imbalance factors in acceptable ranges during the sags. Also, the superiority of designed FOSMC over conventional current controllers such as PI and SMC are demonstrated. This outperformance is highlighted with several aspects such as MPAE index, THD values, voltage compensation, and reactive power tracking during the imposed voltage sags. It is shown that the best value for the alpha is 0.76, by which the response of the controller is fast and accurate. Finally, the simulations are validated through real-time results. Our future work is focused on the LVRT capability of the MGs including both grid-forming and grid-following inverters. In addition, the effect of grid strength and R/X ratio of the power lines can be discussed in the future investigations, which has not been addressed sufficiently in this literature.

بدون دیدگاه