خلاصه
1. معرفی
2. راه اندازی آزمایشی
3. پردازش و تجزیه و تحلیل داده ها
4. نتایج
5. بحث و نتیجه گیری
بیانیه مشارکت نویسنده CRediT
قدردانی
منابع
Abstract
1. Introduction
2. Experimental setup
3. Data processing and analysis
4. Results
5. Discussion and conclusions
CRediT authorship contribution statement
Acknowledgments
References
چکیده:
هدف این مطالعه شناسایی عملی حفرههای زیرمتری در داخل سازههای بتن مسلح با قطرها و عمقهای مختلف با استفاده از آنتنهای فرکانس متفاوت 800، 1000، 1200 و 1600 مگاهرتز است. این آزمایش بر روی دو بلوک بتنی با حفره های متوسط بین 70 تا 100 میلی متر و حفره های کوچک بین 10 تا 25 میلی متر انجام شد. یک بررسی GPR با تقسیم هر بلوک به دو شبکه پروفیل با فاصله پروفیل 50 و 100 میلی متر انجام شد. سپس داده های GPR در هر دو جهت افقی و عمودی هر بلوک با آنتن های چند فرکانس جمع آوری شد. دادههای جمعآوریشده بهصورت دو بعدی و سهبعدی برای شناسایی مکان، ابعاد و روشنایی دقیق این حفرهها پردازش شدند. نتایج نشان داد که GPR این پتانسیل را دارد که در خودکارسازی شناسایی و مکانیابی حفرههای تعبیهشده در بلوکهای بتنی کاملاً مؤثر باشد. دقت سیستم قادر به شناسایی مکان های خالی عمدتاً به فرکانس آنتن مورد استفاده و قطر فضای خالی بستگی داشت، در حالی که عمق نفوذ با فرکانس آنتن مورد استفاده نسبت معکوس داشت، با اعماق تخمین زده شده در محدوده 25. سانتی متر (با استفاده از آنتن 1600 مگاهرتز) تا 1.5 متر (با استفاده از آنتن 800 مگاهرتز). علاوه بر این، یک بررسی GPR برای ارزیابی دو سایت در داخل ساختمانهای مسکونی قبل و بعد از فرآیند بازسازی انجام شد. اسکن رادار مهارت قابل توجهی در شناسایی موقعیت سایت های میلگرد، خواه در یک سطح یا دو سطح، در داخل مناطق خاصی از ساخت و ساز قرار داشته باشد، نشان داد. این مطالعه توانایی GPR را برای شناسایی عمق فولاد تقویتکننده در مواد سیمانی، بهویژه در مناطقی که خاک تجربه نشست کرده است، نشان داد.
Abstract
This study aims to the practical detection of sub-meter scale voids located inside reinforced concrete structures with different diameters and depths using different frequency antennas of 800, 1000, 1200, and 1600 MHz. The experiment was performed on two concrete blocks with medium-sized voids between 70 and 100 mm diameter, and small-sized voids between 10 and 25 mm diameter. A GPR survey was conducted by dividing each block into two grids of profiles with 50- and 100-mm profile spacing. Then, GPR data was collected along both the horizontal and vertical directions of each block with multi-frequency antennas. The gathered data was processed in 2D and 3D to detect the exact location, dimension, and brightness of these voids. The results showed that GPR has the potential to be quite effective in automating the identification and location of embedded voids within concrete blocks. The accuracy with which the system was able to identify void locations depended mainly on the frequency of the antenna used and the diameter of the void, while the depth of penetration was inversely proportional to the frequency of the used antenna, with estimated depths ranging from 25 cm (using a 1600 MHz antenna) to 1.5 m (using 800 MHz antenna). Moreover, a GPR survey was conducted to evaluate two sites inside residential buildings before and after the rehabilitation process. The radar scan exhibited a notable proficiency in identifying the positions of rebar sites, whether they were situated at a single level or two levels, inside certain areas of construction. The study revealed the ability of GPR to identify the depth of the reinforcing steel within the cement material, particularly in areas where the soil has experienced subsidence.
Introduction
Ground-penetrating radar (GPR) is a well-established characterization and analysis tool in non-destructive test applications ( Brian et al., 2018 ). GPR is now a widely accepted field of scanning technology for surveying and imaging subsurface conditions (Annan, 1992, Tzanis, 2017 , Yang et al., 2020 ). GPR is an effective non-destructive testing method that is characterized by its rapidity, continuity, high detection accuracy, and ability to overcome the shortcomings of the core sampling and impact echo methods. The unique advantage of GPR causes concern for many scholars. Recently, GPR has been used in a wide range of civil engineering and geotechnical applications ( Li et al., 2003 , Rao et al., 2007 , Wu and Chang, 2007 , Rister and Graves, 2008 , Alhasanat et al., 2013 , Tian et al., 2018 ), and in reinforced concrete tests applications, due to its capabilities, benefits and fast performance in the non-destructive exploration of all defects that may be found inside the cement layers.
GPR can also be used to conduct a real-time concrete inspection survey using radar to locate rebar, pipes, tension bars, dowels, and plastic and fiber-optic conduits ( Bungey and Millard, 1993 , Muldoon et al., 2007 , Bala et al., 2015 ). There are few studies on concrete inspection surveys to detect voids/cavities within and under concrete slabs ( Watanabe et al., 2004 , Pollock et al., 2008 , Roger et al., 2011 , Abdul Razak et al., 2015 , Nobes, 2017 ). Radar surveys can be conducted on airport runways, tunnels, abutments, dams, pavements, and garages ( Millard et al., 2002 , Loizos and Plati, 2007 , Evans, 2009 , Lee, 2011 ). Asphalt roads and bridges can also be scanned ( Parry and Davis, 1983 , Maser and Scullion, 1992 , Hugenschmidt and Mastrangelo, 2006 , Loken, 2007 , Hoegh et al., 2015 ). The concrete slabs can be inspected for issues including relative thickness, deterioration, and structural problems ( Roddis et al., 1992 , Loizos and Plati, 2007 )
Results
These two blocks have been surveyed along the same lines to detect the internal voids by different GPR devices such as CX11 (with antenna of 1200 and 1600 MHz), Conquest (with antenna of 1000 MHz), Ramac (with an antenna of 800 MHz), and HandyScan with antenna of 1500 MHz) and the results are then compared.
4.1. Medium-scale void-size (70 mm and 100 mm)
For block No.1, using an 800 MHz antenna, the location of both voids could be detected at a depth of 280 mm for the first void and 200 mm for the second one ( Fig. 3 a). When a 1000 MHz antenna was used the accuracy level of the data increased in the second step for both 2D and 3D, due to the good coverage of the survey concerning the 28-grid lines with a spacing of 50 mm. The first void was represented more accurately in the second step ( Fig. 3 b & 3c) while the level of accuracy decreased significantly concerning 14-grid radar profiles for the same void ( Fig. 3 d & 3e). When a 1200 MHz antenna was used, the depth of penetration increased up to 500 mm ( Fig. 3 f). The degree of brightness decreased in the upper part of block No.1, however, due to the decrease in the frequency range compared to what is considered to be the optimum value in the case of deeper targets. When a 1600 MHz antenna was used, it was noticed that the buried voids could be detected to a depth of 450 mm ( Fig. 3 g). The accuracy level of data decreased with the increasing depth (e.g., see void No.2 which was represented with low accuracy at a depth of 280 mm, and compared with void No.1 at a depth of 200 mm).