مقاله انگلیسی یک الگوریتم کلونی زنبور مصنوعی بهبود یافته برای مسئله مکان یابی سبز
ترجمه نشده

مقاله انگلیسی یک الگوریتم کلونی زنبور مصنوعی بهبود یافته برای مسئله مکان یابی سبز

عنوان فارسی مقاله: یک الگوریتم کلونی زنبور مصنوعی بهبود یافته برای مسئله مکان یابی سبز دوباره دوچرخه با دوچرخه های شکسته
عنوان انگلیسی مقاله: An enhanced artificial bee colony algorithm for the green bike repositioning problem with broken bikes
مجله/کنفرانس: Transportation Research Part C: Emerging Technologies - تحقیقات حمل و نقل بخش C: فناوری های نوظهور
رشته های تحصیلی مرتبط: مهندسی عمران، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: برنامه ریزی حمل و نقل، الگوریتم ها و محاسبات
کلمات کلیدی فارسی: مسئله مکان یابی مجدد دوچرخه سبز، انتشار، دوچرخه های شکسته، الگوریتم کلونی زنبور مصنوعی
کلمات کلیدی انگلیسی: Green bike repositioning problem, Emissions, Broken bikes, Artificial bee colony algorithm
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.trc.2020.102895
دانشگاه: Kunming University of Science and Technology, Kunming, China
صفحات مقاله انگلیسی: 22
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2021
ایمپکت فاکتور: 10.155 در سال 2020
شاخص H_index: 133 در سال 2021
شاخص SJR: 3.185 در سال 2020
شناسه ISSN: 0968-090X
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E15448
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
نوع رفرنس دهی: vancouver
فهرست مطالب (انگلیسی)

Highlights

Abstract

Keywords

1. Introduction

2. Literature review

3. Problem formulation

4. Methodology

5. Computational experiments

6. Conclusions

CRediT authorship contribution statement

Acknowledgments

References

بخشی از مقاله (انگلیسی)

Abstract

The Bike Repositioning Problem (BRP) has raised many researchers’ attention in recent years to improve the service quality of Bike Sharing Systems (BSSs). It is mainly about designing the routes and loading instructions for the vehicles to transfer bikes among stations in order to achieve a desirable state. This study tackles a static green BRP that aims to minimize the CO2 emissions of the repositioning vehicle besides achieving the target inventory level at stations as much as possible within the time budget. Two types of bikes are considered, including usable and broken bikes. The Enhanced Artificial Bee Colony (EABC) algorithm is adopted to generate the vehicle route. Two methods, namely heuristic and exact methods, are proposed and incorporated into the EABC algorithm to compute the loading/unloading quantities at each stop. Computational experiments were conducted on the real-world instances having 10–300 stations. The results indicate that the proposed solution methodology that relies on the heuristic loading method can provide optimal solutions for small instances. For large-scale instances, it can produce better feasible solutions than two benchmark methodologies in the literature.

 

1. Introduction

In Bike Sharing Systems (BSSs), people can rent shared bikes to satisfy the needs for short-distance travel, such as the connection between home and a subway station, or just a leisure trip. However, due to the existence of asymmetric bike flows, some stations may be filled-in with returned bikes while some others are empty. For example, during the morning peak, the bike stations in residential areas might be empty, whereas those in the business area might be full. In a hilly area, the stations at the bottom can be full whereas those at the top can be empty because downhill trips are usually more than uphill trips. Therefore, the bikes need to be redistributed among all the stations after a certain period, so that a desirable inventory level can be maintained at each station to satisfy upcoming users’ demand. This operational problem is referred to as the Bike Repositioning Problem (BRP).

The repositioning operation is mainly about using a dedicated fleet of trucks or trailers to transport bikes among stations in order to reach the expected inventory level at each station (Raviv et al., 2013). There are generally two types of repositioning: static and dynamic. For the static repositioning that most of the current studies focus on (e.g., Cruz et al., 2017, Ho and Szeto, 2017, Liu et al., 2018, Szeto and Shui, 2018), the bike inventory and demand levels at each station are assumed to be relatively stable over time. The dynamic repositioning considers the variations of bike inventory and demand levels over time within a day (see Ghosh et al., 2017, Zhang et al., 2017, Shui and Szeto, 2018, Brinkmann et al., 2019). These two types of repositioning consider different application scenarios.