مقاله انگلیسی پاسخ قاب ها و دیوارهای بتن مسلح بحرانی برشی تحت بارگذاری یکنواخت
ترجمه نشده

مقاله انگلیسی پاسخ قاب ها و دیوارهای بتن مسلح بحرانی برشی تحت بارگذاری یکنواخت

عنوان فارسی مقاله: پاسخ قاب ها و دیوارهای بتن مسلح بحرانی برشی تحت بارگذاری یکنواخت
عنوان انگلیسی مقاله: Response of shear critical reinforced concrete frames and walls under monotonic loading
مجله/کنفرانس: سازه های مهندسی - Engineering Structures
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: سازه، مدیریت ساخت
کلمات کلیدی فارسی: فرمول بندی المان محدود مبتنی بر نیرو، اندرکنش لحظه ای-برشی-محوری، پاسخ استاتیکی غیرخطی، برش قاب های بتن مسلح بحرانی
کلمات کلیدی انگلیسی: Force based finite element formulation - Moment-shear-axial interaction - Nonlinear static response - Shear critical reinforced concrete frames
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.engstruct.2021.113483
دانشگاه: Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Sri Lanka
صفحات مقاله انگلیسی: 17
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2022
ایمپکت فاکتور: 4.471 در سال 2020
شاخص H_index: 141 در سال 2020
شاخص SJR: 1.567 در سال 2020
شناسه ISSN: 0141-0296
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: E15842
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract
Keywords
Introduction
Proposed formulation
Constitutive model
Experimental database
Results and discussion
Summary of the experimental validation
Conclusions
CRediT authorship contribution statement
Declaration of Competing Interest
Appendix A.
References

بخشی از مقاله (انگلیسی)

Abstract
This paper focuses on a novel finite element formulation which can predict the bending moment-shear force-axial force interaction of reinforced concrete frames and walls, and validate it against 170 experiments available in literature. This distributed plasticity element is established on force-based finite element method, where the relationship between element nodal forces and section forces are exactly known. Hence, element discretization is nonessential when modelling frames using this formulation, reducing the number of degrees of freedom in the numerical model compared to displacement-based formulations. The computations are carried out at four hierarchical levels, namely structure, element, section and fibre. There are two nested iterative procedures at the structure level and the section level. In the existing formulation, these iterative procedures are computationally demanding due to use of initial stiffness matrices. Furthermore, it uses Modified Compression Field Theory at the fibre level, which has inherent drawbacks compared to its more evolved version, the Disturbed stress Field Model. The current study refines the iterative procedures at structure and section levels to fully operate with tangent stiffness matrices to improve the speed of convergence. In addition, the Modified Compression Field Theory is replaced with the Disturbed stress Field Model at the fibre level to compute fibre resisting force for a given fibre deformation, accounting for both averaged behaviour and local crack slip. The novel element is validated by comparing the predicted results with experimental results of 170 tests found in the literature. It is shown that the novel element predicts the load carrying capacity well with an average experimental-to-predicted load carrying capacity ratio of 0.99 and a coefficient of variation of 12.8%. Furthermore, the element can be used to discuss the different failure mechanisms of reinforced concrete frame elements.
Introduction
Developing a robust, rational and computationally efficient numerical tool to perform nonlinear analyses of reinforced concrete (RC) frames accounting for bending moment-shear force-axial force (M-V-N) interaction is a challenging problem. Modelling RC frames with fibre beam-column elements have become popular over the years owing to its balanced accuracy of prediction and computational efficiency. The relationship between nodal forces and nodal deformations of such elements can be derived using displacement-based [1–4], force-based or mixed finite element methods [5–7]. Among these methods, force-based finite element method is preferred to be used with fibre beam-column elements as it waives the need for element discretization owing to the exactly known force interpolation functions [8–18].