مقاله انگلیسی یک سیستم جدید تشخیص نفوذ مبتنی بر مجموعه برای اینترنت اشیا
ترجمه نشده

مقاله انگلیسی یک سیستم جدید تشخیص نفوذ مبتنی بر مجموعه برای اینترنت اشیا

عنوان فارسی مقاله: یک سیستم جدید تشخیص نفوذ مبتنی بر مجموعه برای اینترنت اشیا
عنوان انگلیسی مقاله: A New Ensemble-Based Intrusion Detection System for Internet of Things
مجله/کنفرانس: مجله عربی علوم و مهندسی - Arabian Journal for Science and Engineering
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: اینترنت و شبکه های گسترده، شبکه های کامپیوتری، امنیت اطلاعات
کلمات کلیدی فارسی: تشخیص نفوذ، اینترنت اشیا، یادگیری ماشینی، امنیت، تشخیص ناهنجاری، یادگیری گروهی
کلمات کلیدی انگلیسی: Intrusion detection - IoT - Machine learning - Security - Anomaly detection - Ensemble learning
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1007/s13369-021-06086-5
دانشگاه: Department of Computer Science, Quaid-i-Azam University, Islamabad, Pakistan
صفحات مقاله انگلیسی: 15
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2021
ایمپکت فاکتور: 2.334 در سال 2020
شاخص H_index: 43 در سال 2020
شاخص SJR: 0.360 در سال 2020
شناسه ISSN: 2193-567X
شاخص Quartile (چارک): Q2 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: E15965
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract
Introduction
Literature Review
Methodologies
Dataset
Results Conclusion
Conclusion
References

بخشی از مقاله (انگلیسی)

Abstract
The domain of Internet of Things (IoT) has witnessed immense adaptability over the last few years by drastically transforming human lives to automate their ordinary daily tasks. This is achieved by interconnecting heterogeneous physical devices with different functionalities. Consequently, the rate of cyber threats has also been raised with the expansion of IoT networks which puts data integrity and stability on stake. In order to secure data from misuse and unusual attempts, several intrusion detection systems (IDSs) have been proposed to detect the malicious activities on the basis of predefined attack patterns. The rapid increase in such kind of attacks requires improvements in the existing IDS. Machine learning has become the key solution to improve intrusion detection systems. In this study, an ensemble-based intrusion detection model has been proposed. In the proposed model, logistic regression, naive Bayes, and decision tree have been deployed with voting classifier after analyzing model’s performance with some prominent existing state-of-the-art techniques. Moreover, the effectiveness of the proposed model has been analyzed using CICIDS2017 dataset. The results illustrate significant improvement in terms of accuracy as compared to existing models in terms of both binary and multi-class classification scenarios.
Introduction
Today, our planet is surrounded by a plethora of electronic devices that are transforming human lives. In this regard, Internet of Things (IoT) is emerging as an innovative technology that is transforming the industry and life smarter with intelligent devices having enhanced connectivity such as healthcare monitoring, environment monitoring, water management, smart agriculture, and smart home. More precisely in IoT, many heterogeneous physical devices can cooperate and communicate with one another for transferring the data over large number of networks without interference of human-to-human or human-to-device interfaces [1–4]. Figure 1 demonstrates the usage of IoT in different fields. It is anticipated that by year 2025, 41.6 billion IoT devices will be interconnected, which poses many challenges for the practical realization of IoT [5]. Specifically in large IoT networks, where challenges related to the integrity and confidentiality of data exist. The number of security concerns, such as zero-day attacks aimed at internet users, has increased. As a result of the widespread use of the Internet in numerous nations, such as Australia and the USA, zeroday assaults had a considerable impact [6].