مقاله انگلیسی کمک به بررسی جرم هوشمند با استفاده از دسته بندی کننده های یادگیری ماشین
ترجمه نشده

مقاله انگلیسی کمک به بررسی جرم هوشمند با استفاده از دسته بندی کننده های یادگیری ماشین

عنوان فارسی مقاله: کمک به بررسی جرم هوشمند با استفاده از دسته بندی کننده های یادگیری ماشین در جرم و اطلاعات قربانی
عنوان انگلیسی مقاله: Intelligent Crime Investigation Assistance Using Machine Learning Classifiers on Crime and Victim Information
مجله/کنفرانس: کنفرانس بین المللی درباره کامپیوتر و فناوری اطلاعات- International Conference on Computer and Information Technology
رشته های تحصیلی مرتبط: حقوق، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: حقوق جزا و جرم شناسی، هوش مصنوعی
کلمات کلیدی فارسی: جرم، تحقیق، سیستم خودکار، دسته بندی، ویژگی ها، برچسب ها
کلمات کلیدی انگلیسی: Crime, investigation, Automated system, Classification, Features, Labels
شناسه دیجیتال (DOI): https://doi.org/10.1109/ICCIT51783.2020.9392668
دانشگاه: BRAC University, Bangladesh
صفحات مقاله انگلیسی: 4
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: کنفرانس
نوع مقاله: ISI
سال انتشار مقاله: 2021
ایمپکت فاکتور: _
شاخص H_index: _
شاخص SJR: _
شناسه ISSN: _
شاخص Quartile (چارک): _
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: E16070
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract
INTRODUCTION
LITERATURE REVIEW
PROPOSED MODEL
DATASET DETAILS AND PROCESSING
RESULT AND ANALYSIS
CONCLUSION AND FUTURE WORKS
REFERENCES

بخشی از مقاله (انگلیسی)

Abstract
In order to establish peace and justice in a society, it is essential to make proper and correct investigation of crime incidents. With the expansion of the utilization of computerized system to track crime and violence, computer applications can help law enforcement officers in a significant way. In most cases, crime incidents are kept in police database and these can be used for various helpful purpose. In this experiment, we have collected data of crime scenario from Bangladesh Police that had features such as area of crime, type of crime, number of victims and so on. Then we applied machine learning algorithms on the dataset for prediction of some attributes such as criminal age, sex, race, crime method etc. We used four different algorithms for our research: K-Nearest Neighbor (KNN), Logistic Regression (LR), Random Forest Classifier (RFC), Decision Tree Classifier (DTC). Using the aforementioned algorithms with 10 fold cross validation, we achieved different accuracy from all four attribute labels ranging from an average of approximate 75% to an average of approximate 90%. Despite the clear need of further improvement, the results give clear implications that it is possible to achieve well performing automated system for suspect attribute prediction with further work. Finally, we ended the research by comparing and analyzing all the achieved results. 
INTRODUCTION
Criminal investigation is a multifaceted problem solving challenge. During investigation, an expert official is often required to examine the location of the crime. The official meticulously examines various important aspects of the crime scene, collects data and eventually analyzes data in order to infer identification information of the criminal. This complicated process of criminal identification demands high critical and reasoning skills. Additionally, most of the time these procedures are needed to be performed fairly quickly since criminals always try to hide all their traces. Therefore, the more time criminals get, the harder it becomes to track him down. In order to address all these complications, the crime scene examiners need to earn lots of experience and analytical skills so that they can make proper use of insightful information. [1] However, very few can earn such interpretative skills which results in a low number of proficient criminal investigators. Therefore, a lack of enough crime investigator is often evident.