شبیه سازی FE ساختارهای مهاربندی شده بتن مسلح تحت بارگذاری چرخه ای
ترجمه نشده

شبیه سازی FE ساختارهای مهاربندی شده بتن مسلح تحت بارگذاری چرخه ای

عنوان فارسی مقاله: شبیه سازی FE ساختارهای مهاربندی شده بتن مسلح استوانه ای تحت بارگذاری چرخه ای رزرو شده
عنوان انگلیسی مقاله: FE simulation of cylindrical RC containment structures under reserved cyclic loading
مجله/کنفرانس: سازه های مهندسی - Engineering Structures
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: سازه، مدیریت ساخت
کلمات کلیدی فارسی: بتن آرمه، ساختارهای مهاربندی شده هسته ای، سازه پوسته ای، مدل بنیادی، المان محدود غیر خطی
کلمات کلیدی انگلیسی: Reinforced concrete، Nuclear containment structures، Shell element, constitutive model، Nonlinear finite element
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.engstruct.2018.10.050
دانشگاه: Department of Infrastructure, RPS, Houston, TX 77079, USA
صفحات مقاله انگلیسی: 13
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 3/167 در سال 2017
شاخص H_index: 104 در سال 2019
شاخص SJR: 1/69 در سال 2017
شناسه ISSN: 0141-0296
شاخص Quartile (چارک): Q1 در سال 2017
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
کد محصول: E11011
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Description of CSMM-based shell element

3- Simulation of RC nuclear containment structures

4- Comparisons of analytical and test results

5- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

The nuclear containment structure is one of the most important infrastructure systems ensuring the safety of a nuclear power plant. The structural behavior of a cylindrical containment structure made of reinforced concrete (RC) with large dimensions and numerous rebars is complex and difficult to predict. The complex behavior of the RC containment structure has been investigated in an international collaboration project between the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan and the University of Houston (UH), Houston, Texas. At NCREE two 1/13 scaled cylindrical RC containment specimens were tested under reversed cyclic loads [1]. At UH, a finite element simulation of the two tested specimens was developed using a finite element analysis (FEA) program SCS [2]. In the program, a new shell element, the so-called CSMM-based shell element, was developed based on the Cyclic Softened Membrane Model [3] and the formulation of an 8-node Serendipity curved shell element [4] with a multi-layer approach [5]. The UH simulated seismic behavior was close to the NCREE experimental results. This paper presents the theoretical development of the FEA program SCS and the comparisons of its predictions with the experimental structural behavior of the two RC containment specimens. This simulation model and the FEA program are excellent tools to develop effective performance-based design provisions.

Introduction

The safety of a nuclear power plant depends strongly on its containment structure. A nuclear containment structure is commonly a steel or reinforced concrete structure enclosing a nuclear reactor. This structure serves as a barrier to prevent various types of harmful radiation from contaminating the atmosphere during a rare nuclear meltdown accident [6]. Because of its critical importance to nuclear safety, the nuclear containment structure must be able to maintain structural integrity while undergoing simultaneous stresses caused by internal pressure, earthquake action and/or high local loads [7]. Considered to be a competitive material that satisfies safety requirements, reinforced concrete (RC) has been used for the nuclear containment structure since the beginning of the nuclear power industry [8]. The structural behavior of the RC nuclear containment structure with large cross sections, many layers of rebars, and complex stress conditions, is difficult to predict, especially when subjected to the earthquake loading. The seismic response of the RC nuclear containment structures is highly nonlinear caused by the highly inelastic behavior of materials including rebars and concrete under reversed cyclic actions. However, from the structural point of view, a whole RC nuclear containment structure can be visualized as assemblies of many RC elements so that the finite element analysis program combined with proper constitutive models for concrete and reinforcing bars can be a very powerful tool. The key to rational analyses of the RC nuclear containment structure is to completely understand the behavior of one element isolated from the structure. Once a rational model is developed to predict the behavior of one element, this model can be incorporated into a finite element analysis program to predict the behavior of the whole structure under different kinds of loading.