تجزیه سیگنال های چند جزئی چند متغیره فرکانس زمان
ترجمه نشده

تجزیه سیگنال های چند جزئی چند متغیره فرکانس زمان

عنوان فارسی مقاله: تجزیه سیگنال های چند جزئی چند متغیره فرکانس زمان
عنوان انگلیسی مقاله: Time-frequency decomposition of multivariate multicomponent signals
مجله/کنفرانس: پردازش سیگنال - Signal Processing
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: مهندسی الگوریتم ها و محاسبات، مهندسی نرم افزار، برنامه نویسی کامپیوتر
کلمات کلیدی فارسی: سیگنال های چند متغیره، تحلیل سیگنال فرکانس زمان، سیگنال تحلیلی، فرکانس لحظه ای، تجزیه سیگنال، اندازه گیری غلظت، برآورد
کلمات کلیدی انگلیسی: Multivariate signals، Time-frequency signal analysis، Analytic signal، Instantaneous frequency، Signal decomposition، Concentration measure، Estimation
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journal List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.sigpro.2017.08.001
دانشگاه: Electrical Engineering Department, University of Montenegro, Montenegro
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 3/933 در سال 2017
شاخص H_index: 105 در سال 2019
شاخص SJR: 0/940 در سال 2017
شناسه ISSN: 0165-1684
شاخص Quartile (چارک): Q1 در سال 2017
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 26
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E11151
فهرست انگلیسی مطالب

Abstract


1- Introduction


2- Multivariate time-frequency analysis


3- Multicomponent signals


4- Inversion and signal decomposition


5- Decomposition algorithm


6- Numerical examples


7- Conclusion


References

نمونه متن انگلیسی مقاله

Abstract


A solution of the notoriously difficult problem of characterization and decomposition of multicomponent multivariate signals which partially overlap in the joint time-frequency domain is presented. This is achieved based on the eigenvectors of the signal autocorrelation matrix. The analysis shows that the multivariate signal components can be obtained as linear combinations of the eigenvectors that minimize the concentration measure in the time-frequency domain. A gradient-based iterative algorithm is used in the minimization process and for rigor, a particular emphasis is given to dealing with local minima associated with the gradient descent approach. Simulation results over illustrative case studies validate the proposed algorithm in the decomposition of multicomponent multivariate signals which overlap in the time-frequency domain.


Introduction


Signals with time-varying spectral content are not easily characterized by the conventional Fourier analysis. They are commonly studied within the time-frequency (TF) analysis [1]–[8]. Research in this field has resulted in numerous representations and algorithms which have been almost invariably introduced for the processing of univariate signals, with most frequent characterization through amplitude and frequency-modulated oscillations [6], [9]. Recently, the progress in sensing technology for multidimensional signals has been followed by a growing interest in time-frequency analysis of such multichannel (multivariate and/or multidimensional) data. Namely, developments in sensor technology have made accessible multivariate data. Indeed, the newly introduced concept of modulated bivariate and trivariate data oscillations (3D inertial body sensor, 3D anemometers [9]) and the generalization of this concept to an arbitrary number of channels have opened the way to exploit multichannel signal interdependence in the joint time-frequency analysis [10]– [12]. The concept of multivariate modulated oscillations has been proposed in [10], under the restricting assumption that one common oscillation fits best all individual channel oscillations. In other words, a joint instantaneous frequency (IF) aims to characterize multichannel data by capturing the combined frequency of all individual channels. It is defined as a weighted average of the IFs in all individual channels. The deviation of multivariate oscillations in each channel from the joint IF is characterized by the joint instantaneous bandwidth. With the aim to estimate the joint IF of multichannel signals, the synchrosqueezed transform, a highly concentrated time-frequency representation (TFR) belonging to the class of reassigned TF techniques, has been recently extended to the multivariate model [9]. Following the same aim of extracting the local oscillatory dynamics of a multivariate signal, the wavelet ridge algorithm has also been introduced within the multivariate framework [10]. Another very popular concept, empirical mode decomposition (EMD), has been studied for multivariate data, [18]- [22]. However, successful EMD-based multicomponent signal decomposition is possible only for signals having nonoverlapping components in the TF plane.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

تجزیه سیگنال های چند جزئی چند متغیره فرکانس زمان
نوشته های مرتبط
مقالات جدید
نماد اعتماد الکترونیکی
پیوندها