نانوذرات نیکل پلاسمون آراسته شده با فوتو کاتد LaFeO3 برای افزایش تولید هیدروژن
ترجمه نشده

نانوذرات نیکل پلاسمون آراسته شده با فوتو کاتد LaFeO3 برای افزایش تولید هیدروژن

عنوان فارسی مقاله: نانوذرات نیکل پلاسمون آراسته شده با فوتو کاتد LaFeO3 برای افزایش تولید هیدروژن خورشیدی
عنوان انگلیسی مقاله: Plasmonic nickel nanoparticles decorated on to LaFeO3 photocathode for enhanced solar hydrogen generation
مجله/کنفرانس: مجله بین المللی انرژی هیدروژن - International Journal of Hydrogen Energy
رشته های تحصیلی مرتبط: مهندسی انرژی، شیمی
گرایش های تحصیلی مرتبط: انرژی های تجدیدپذیر، نانو شیمی، شیمی تجزیه، سیستم های انرژی، فناوری های انرژی
کلمات کلیدی فارسی: شکافت فوتو الکتروشیمیایی آب، رزونانس پلاسمون سطحی، نانوذره ی Ni، تفاضل محدود حوزه زمانی، کاتد نوری، LaFeO3
کلمات کلیدی انگلیسی: Photoelectrochemical water splitting، Surface plasmon resonance، Ni nanoparticle، Finite difference time domain، Photocathode، LaFeO3
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ijhydene.2018.10.240
دانشگاه: Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
صفحات مقاله انگلیسی: 9
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4/216 در سال 2018
شاخص H_index: 187 در سال 2019
شاخص SJR: 1/1 در سال 2018
شناسه ISSN: 0360-3199
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E11398
فهرست مطالب (انگلیسی)

Abstract

Introduction

Method

Instrument details

Results and discussion

Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Plasmonic Ni nanoparticles were incorporated into LaFeO3 photocathode (LFO-Ni) to excite the surface plasmon resonances (SPR) for enhanced light harvesting for enhancing the photoelectrochemical (PEC) hydrogen evolution reaction. The nanostructured LFO photocathode was prepared by spray pyrolysis method and Ni nanoparticles were incorporated on to the photocathode by spin coating technique. The LFO-Ni photocathode demonstrated strong optical absorption and higher current density where the untreated LFO film exhibited a maximum photocurrent of 0.036 mA/cm2 at 0.6 V vs RHE, and when incorporating 2.84 mmol Ni nanoparticles the photocurrent density reached a maximum of 0.066 mA/cm2 at 0.6 V vs RHE due to the SPR effect. This subsequently led to enhanced hydrogen production, where more than double (2.64 times) the amount of hydrogen was generated compared to the untreated LFO photocathode. Ni nanoparticles were modelled using Finite Difference Time Domain (FDTD) analysis and the results showed optimal particle size in the range of 70–100 nm for Surface Plasmon Resonance (SPR) enhancement.

Introduction

With climate change and global warming ever becoming the focus of concern for millions of people globally, there is a critical need to develop scalable and sustainable energy source assets. One of the possible way this can be accomplished is by harnessing the solar energy reaching the earth's surface, which supplies enough energy every hour to meet humanities need for a year [1]. However, the predominant renewable energy sources, solar energy and wind energy, are highly intermittent and hence there is a dire need for the development of sustainable energy storage systems. The conversion of incoming photons from the sun light into storable chemical fuel (hydrogen), also known as solar fuel, is a highly attractive clean and sustainable energy storage solution. The stored hydrogen can be converted to electricity as per the demand using fuel cells. Currently, the major processes being explored for hydrogen generation are steam reforming [2,3], coal gasification [4], biomass derivatives [5], thermochemical [6] and biological processes [7]. However, most of these processes are energy intensive and generates a large carbon footprint. Photoelectrochemical (PEC) water splitting is a potential pathway in realising environmental friendly hydrogen production as it only requires semiconductor electrodes, water and sunlight [8]. The semiconductor materials require favourable band alignments for water reduction/oxidation, optimal bandgaps and high stability under reaction conditions [9]. Cu2O [10,11], WSe2 [12], CdTe [13], CuGaSe2 [8], Si [14], GaP [15] and InP [16] are photocathode materials which already have applications in solar assisted water splitting for hydrogen generation. However, due to availability, cost, stability and synthesis procedures there are limitations to their use. LaFeO3 (LFO), a non-toxic p-type semiconductor material with a direct bandgap of 2.4 eV, high stability and ability to generate hydrogen spontaneously without the need of an external bias [17], is a promising photocathode material for solar to hydrogen conversion. However, due to its low absorption coefficient, the current density is low, thus yielding lower amounts of hydrogen. Therefore, improving the material's light extracting ability is crucial for improving the hydrogen yield capability of LFO.