استانداردهای سازه های فولادی استرالیا
ترجمه نشده

استانداردهای سازه های فولادی استرالیا

عنوان فارسی مقاله: ایجاد قوانین شکست ترد برای استانداردهای سازه های فولادی استرالیا
عنوان انگلیسی مقاله: Establishing new brittle fracture provisions for the Australasian steel structures standards
مجله/کنفرانس: مجله تحقیقات فولاد ساختمانی - Journal of Constructional Steel Research
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: مدیریت ساخت، سازه
کلمات کلیدی فارسی: سازه های فولادی، اتصالات جوشی، شکست ترد، آیین نامه
کلمات کلیدی انگلیسی: Steel structures، Welded joints، Brittle fracture، Code
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jcsr.2018.12.018
دانشگاه: Jade University of Applied Sciences, Wilhelmshaven, Germany
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 3/171 در سال 2018
شاخص H_index: 81 در سال 2019
شاخص SJR: 1.7194 در سال 2018
شناسه ISSN: 0143-974X
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 13
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E11457
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


1- Introduction


2- Metallurgical effects and mechanisms of brittle fracture


3- Current international regulations on brittle fracture


4- Proposal for new material selection design rules in AS 4100, NZS 3404.1 and AS/NZS 5100.6


5- Comparison of the proposed selection criteria with Australian and New Zealand requirements


6- Conclusion


References

نمونه متن انگلیسی مقاله

Abstract


This paper develops a new method to select steel grades manufactured to Australian and New Zealand standards. The current materials selection procedure is currently given in the design standards AS 4100, NZS 3404.1 and AS/NZS 5100.6, which is based on test data on the notch toughness characteristics from a previous generation of steel products originally manufactured in Australia or New Zealand. The existing procedure is limited to temperatures down to −40 °C. Moreover, it does not consider the effect of welding, detailing, stress utilisation, seismic loading rates, defects and other important factors. This paper includes a critical review of other international material selection procedures, before preparing a new design method based on fracture mechanics. The method extends the temperature range down to −120 °C, which is much lower than considered in many other international standards. It also includes New Zealand specific requirements for seismic loading rates. In comparison with the new method, it is demonstrated that the current materials selection procedure is much more conservative for plate thickness up to 75 mm for non-seismic design. The paper presents selection tables that can be considered for the development of new brittle fracture provisions for future versions of the Australian and New Zealand steel structures design standards.


Nature of brittle fracture


A brittle fracture is defined as fracture with little, or no plastic deformation of the failed component. It can be initiated by an overload of a cross-section in combination with material properties and/or geometrical allocation of the stresses (i.e. triaxiality of stresses due to the structural detail). The plastic deformation capability is essential for the avoidance of brittle fracture. It can be affected by: hardening in the weld heat affected zone; triaxiality of stress caused by the design of the structural detail; higher strain rates (e.g. during seismic events); or by neutron embrittlement. Another consideration is the possible inhomogeneity of the material, caused by sulphide inclusions leading to reduced mechanical properties in the through-thickness direction of the material. Other considerations include the loading imposed during fabrication and in service, design load, weld shrinkage and alignment at fabrication, erection stresses caused by poor fit-up, stresses by possible displacements of abutments and loadings caused by seismic events. In the design office, usually only stresses due to design loads are verified by calculation. The other stresses (e.g. residual stresses from shrinkage), are covered by the assurance of a plastic deformation capacity. That assurance is of equal importance as the numerical verification by calculation.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

استانداردهای سازه های فولادی استرالیا
نوشته های مرتبط
مقالات جدید
پیوندها