Abstract
I.Introduction
II.Experimental Set Up
III.Model Development
IV.Results and Discussion
V.Conclusion and Future Work
Introduction
Car accidents are one of the major causes of mortality in modern society. While it is desirable to maintain the crashworthiness, car manufacturers perform crash tests on a sample of vehicles for monitoring the effect of the occupant in different crash scenarios. Car crash tests are usually performed to ensure safe design standards in crash-worthiness (the ability of a vehicle to be plastically deformed and yet maintains a sufficient survival space for its occupants during the crash scenario). However, this process is very time consuming and requires sophisticated infrastructure and trained personnel to conduct such a test and data analysis. Therefore, to reduce the cost associated with the real crash test, it is worthy to adopt the simulation of a vehicle crash and validate the model results with the actual crash test. Nowadays, due to advanced research in simulation tools, simulated crash tests can be performed beforehand the full-scale crash test. Therefore, the cost associated with the real crash test can be reduced. Finite element method (FEM) models and lumped parameter models (LPM) are typically used to model the vehicle crash phenomena and hence can help the designer to better design the vehicle with less number of crash tests. Vehicle crashworthiness can be evaluated in four distinct modes: frontal, side, rear and rollover crashes.