پلتفرم تحلیلی داده بزرگ برای اطلاعات حمل ونقل عمومی
ترجمه نشده

پلتفرم تحلیلی داده بزرگ برای اطلاعات حمل ونقل عمومی

عنوان فارسی مقاله: BIGSEA: یک پلتفرم تحلیلی داده بزرگ برای اطلاعات حمل ونقل عمومی
عنوان انگلیسی مقاله: BIGSEA: A Big Data analytics platform for public transportation information
مجله/کنفرانس: سیستم های کامپیوتری نسل آینده-Future Generation Computer Systems
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات، مهندسی عمران
گرایش های تحصیلی مرتبط: رایانش ابری، شبکه های کامپیوتری، برنامه ریزی حمل و نقل
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.future.2019.02.011
دانشگاه: a Institute of Instrumentation for Molecular Imaging (I3M), Universitat Politècnica de València – CSIC
صفحات مقاله انگلیسی: 65
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 7.007 در سال 2018
شاخص H_index: 93 در سال 2019
شاخص SJR: 0.835 در سال 2018
شناسه ISSN: 0167-739X
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E12072
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Programming models

3. Security and privacy model

4. Cloud services

5. Applications

6. Experimental results

7. Discussion

8. Conclusions

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

Analysis of public transportation data in large cities is a challenging problem. Managing data ingestion, data storage, data quality enhancement, modelling and analysis requires intensive computing and a non-trivial amount of resources. In EUBraBIGSEA (Europe-Brazil Collaboration of Big Data Scientific Research Through Cloud-Centric Applications) we address such problems in a comprehensive and integrated way. EUBra-BIGSEA provides a platform for building up data analytic workflows on top of elastic cloud services without requiring skills related to either programming or cloud services. The approach combines cloud orchestration, Quality of Service and automatic parallelisation on a platform that includes a toolbox for implementing privacy guarantees and data quality enhancement as well as advanced services for sentiment analysis, traffic jam estimation and trip recommendation based on estimated crowdedness. All developments are available under Open Source licenses (http://github.org/eubr-bigsea, https: //hub.docker.com/u/eubrabigsea/).

Introduction

Public transportation in large cities is a major source of high-valuable data to understand and improve the citizens’ lifestyle and to dynamically react to unplanned events. Multiple heterogeneous data sources are available, and different data analytics tools do exist. However, processing such data requires downloading the data, installing processing tools, managing the resources and developing processing software. EUBra-BIGSEA1 (Europe – Brazil Collaboration of Big Data Scientific Research Through Cloud-Centric Applications) is a collaboration aimed at developing convenient data analytic services based on the cloud mainly tailored for public transportation data, able to process data under several restrictions, such as Quality of Service (QoS) constraints and privacy-awareness, by means of convenient and auto-parallelisable programming models. EUBra-BIGSEA has developed and implemented a software architecture that addresses a significant number of software requirements for three main use cases on public transportation data analysis.