شناسایی نقش کاربر براساس رفتار اجتماعی
ترجمه نشده

شناسایی نقش کاربر براساس رفتار اجتماعی

عنوان فارسی مقاله: شناسایی نقش کاربر براساس رفتار اجتماعی و تحلیل شبکه ای برای انتشار اطلاعات
عنوان انگلیسی مقاله: User role identification based on social behavior and networking analysis for information dissemination
مجله/کنفرانس: سیستم های کامپیوتری نسل آینده-Future Generation Computer Systems
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: امنیت اطلاعات، شبکه های کامپیوتری
کلمات کلیدی فارسی: شناسایی کاربر، مدلسازی کاربر، تحلیل شبکه ای اجتماعی، رفتار اجتماعی، انتشار اطلاعات
کلمات کلیدی انگلیسی: User identification، User modeling، Social networking analysis، Social behavior، Information dissemination
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): http://dx.doi.org/10.1016/j.future.2017.04.043
دانشگاه: Faculty of Data Science, Shiga University, Hikone, 522-8522, Japan
صفحات مقاله انگلیسی: 10
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 7.007 در سال 2018
شاخص H_index: 93 رد سال 2019
شاخص SJR: 0.835 رد سال 2018
شناسه ISSN: 167-739X
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E12087
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Related work

3. Social analysis for user identification

4. Experiment and analysis

5. Conclusion

Acknowledgment

References

بخشی از مقاله (انگلیسی)

Abstract

Nowadays, along with the high development of emerging computational paradigms, more and more populations have been involved into the social revolution across various intelligent systems, which results in dynamic user connections associated with a variety of social behaviors. The associated users with different properties, who can be regarded as one kind of information resources, have become increasingly important, especially in social knowledge creation and human intelligence utilization processes. In this study, we concentrate on user role identification based on their social connections and influential behaviors, in order to facilitate information sharing and propagation in social networking environments. Following the construction of a dynamic user networking model, we propose a networkaware method to identify four kinds of special users, who may play an important role in information delivery among a group of users, or knowledge sharing between pairs of users. A set of attributes and measures is proposed and calculated to identify and represent these users based on the analysis of their influence-related social behaviors and dynamic connections. Experiments and evaluations are conducted to demonstrate the practicability and usefulness of the proposed method using Twitter data. Analysis results show the effectiveness of our approach in identifying the distinct features of four kinds of users from the user networking model. Comparison experiments indicate that the proposed identification method outperforms two other related works. Finally, a questionnaire-based evaluation demonstrates the accuracy and efficiency of the proposed method in terms of finding these users in a real social networking environment.

Introduction

With the rapid development of emerging computing paradigms, such as Ubiquitous Computing, Social Computing, and Mobile Computing, we have been continuously experiencing a fast change from all walks of our work, life, learning and entertainment. People are joining together to publish personal messages, share individual experience, and exchange their own opinions through online social networking services. As more and more people have been engaged into this social networking environment, a large number of user generated contents, which contain a variety of human experience and social knowledge, have spread widely in a higher speed than ever before [1]. Comparing with the traditional information dissemination which fully depends on the popularity of posted contents, the information flow propagated cross social networks mainly relies on interactions among individuals and groups associated with various social relationships. That is, the dissemination speed, scale, and controllability are increasingly influenced by the highly connected users. In particular, individual users with different background knowledge (e.g., cognition, interest, reputation, and etc.), are playing a significant role not only in shaping public opinions, but also in expanding access to diversified personal contents more efficiently. Thus, it becomes a challenge but essential issue to dynamically identify types or roles of individuals, who may help to deliver human intelligence and socialized knowledge to the person in need via user relationship chains during information sharing, exchanging, and propagating processes.