توزیع پیچیدگی خطی واریانس 4
ترجمه نشده

توزیع پیچیدگی خطی واریانس 4

عنوان فارسی مقاله: توزیع پیچیدگی خطی واریانس 4 با توالی های دوگانه دوره ای 2n
عنوان انگلیسی مقاله: The 4-Variance Linear Complexity Distribution with 2n-Periodical Binary Sequences
مجله/کنفرانس: علوم کامپیوتر پروسیدیا – Procedia Computer Science
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: الگوریتم و محاسبات
کلمات کلیدی فارسی: توالی دوگانه دوره ای، پیچیدگی خطی، توزیع پیچیدگی خطی واریانس k
کلمات کلیدی انگلیسی: Periodical binary sequence; linear complexity; k-variance linear complexity distribution
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.procs.2019.06.056
دانشگاه: School of Computer Science and Technology, Anhui University of Technology, Ma’anshan, 243032, China
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 1.257 در سال 2018
شاخص H_index: 47 در سال 2019
شاخص SJR: 0.281 در سال 2018
شناسه ISSN: 1877-0509
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 11
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12322
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


1-Introduction


2-The main idea of the proposed structural method


3-Calculating Formulas for the 4-Variance Linear Complicacy


4-Conclusions


References

نمونه متن انگلیسی مقاله

Abstract


In this paper, the method of calculating the k-variance linear complexity distribution with 2n-periodical sequences by the Games-Chan algorithm and sieve approach is affirmed for its generality. The main idea of this method is to decompose a binary sequence into some subsequences of critical requirements, hence the issue to find k-variance linear complexity distribution with 2n-periodical sequences becomes a combinatorial problem of these binary subsequences. As a result, we compute the whole calculating formulas on the k-variance linear complexity with 2n-periodical sequences of linear complexity less than 2n for k = 4, 5. With combination of results in the whole calculating formulas on the 3-variance linear complexity with 2n-periodical binary sequences of linear complexity 2n, we completely solve the problem of the calculating function distributions of 4-variance linear complexity with 2n-periodical sequences elegantly, which significantly improves the results in the relating references.


Introduction


The weight complicacy, as a measure on the linear complicacy of periodical series, was first presented in 1990 [1]. An advanced complicated method, where called as sphere complicacy, was presented by Ding, Xiao and Shan in 1991 [2]. Stamp and Martin [14] defined the k-variance linear complicacy, which is almost the same as the sphere complicacy. Precisely, suppose that s is a periodic series of period N. For any k(0 ≤ k ≤ N ), the k-variance linear complicacy Lk (s) of periodic series s is calculated as the shortest linear complicacy that can be reached when any k or fewer elements of the periodic series are altered in one period. Rueppel [13] obtained the account of 2n -periodical series with fixed linear complicacy L, 0 ≤ L ≤ 2n . When k = 1 and k = 2, Meidl [12] derived the whole calculating formulas on the k-variance linear complicacy with 2n -periodical series with linear complicacy 2n . When k = 2 and k = 3, Zhu and Qi [17] further characterized the whole calculating formulas on the k-variance linear complicacy with 2n – periodical series with linear complicacy 2n − 1.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

توزیع پیچیدگی خطی واریانس 4
نوشته های مرتبط
مقالات جدید
نماد اعتماد الکترونیکی
پیوندها