عنصر محدود ورقه های بتونی
ترجمه نشده

عنصر محدود ورقه های بتونی

عنوان فارسی مقاله: مدل لایه ای برای تجزیه و تحلیل حد عنصر محدود ورقه های بتونی با تقویت در برابر برش
عنوان انگلیسی مقاله: Layer model for finite element limit analysis of concrete slabs with shear reinforcement
مجله/کنفرانس: سازه های مهندسی – Engineering Structures
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: سازه
کلمات کلیدی فارسی: تجزیه و تحلیل حد، مدل لایه ای، ورقه های بتونی، اثر متقابل زمان و برش، FELA، ظرفیت نهایی، ارزیابی استحکام
کلمات کلیدی انگلیسی: Limit analysis، Layer model، Concrete slabs، Shear-moment interaction، FELA، Ultimate capacity، Strength-assessment
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.engstruct.2019.05.038
دانشگاه: COWI A/S, Parallelvej 2, Kongens Lyngby, Denmark
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 3.604 در سال 2018
شاخص H_index: 114 در سال 2019
شاخص SJR: 1.628 در سال 2018
شناسه ISSN: 0141-0296
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E12415
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Nomenclature

1. Introduction

2. Finite element limit analysis of slabs

3. Layer model for shear-bending limitations

4. Implementation of the optimized layer model in finite element limit analysis

5. Numerical examples

6. Conclusion

Acknowledgement

References

بخشی از مقاله (انگلیسی)

Abstract

In the last decades, finite element limit analysis has shown to be an efficient method to determine the loadcarrying capacity of slab bridges in bending. However, the load-carrying capacity of concrete slabs can be limited by the shear capacity and the redistribution of shear forces when subjected to high-intensity loads such as tire pressure from heavy vehicles. In this paper, an optimised layer model is presented which include limitations on both shear and bending. The layer model is based on a sandwich model, which provides a simple way to determine a safe stress distribution for reinforced concrete slabs with shear reinforcement subjected to shear and bending. The yield criteria in the layer model are formulated as second-order cones which enables an efficient implementation in finite element limit analysis where general convex optimisation algorithms are used. The interaction of section forces is investigated for different combinations of shear forces, moments and torsion. The optimised layer model is used, in combination with finite element limit analysis, to evaluate concrete slabs subjected to different load configurations. The results show that the layer model performs very well with finite element limit analysis and it is possible to determine a safe distribution of shear forces, moments and torsion very efficiently. However, the model cannot handle local effects such as punching shear and concentrated loads near the support.

Introduction

The load-carrying capacity of reinforced concrete slab bridges can be limited by the shear capacity and the capability of the structure to redistribute the internal forces. The shear problem arises when heavy vehicles with axle loads are crossing the slab bridges. This is especially critical for wide slab bridges where the redistribution of internal forces is essential for the load-carrying capacity. In practice, the shear problem is often solved by increasing the thickness of the slab to avoid shear reinforcement. However, there can be geometrical constraints fora slab bridge, which limits the thickness. In that case, shear reinforcement, together with redistribution of shear, can be used to increase the load-carrying capacity. Limit analysis based on the assumption of perfect plastic materials has shown to be an efficient method to determine the load-carrying capacity of reinforced concrete slabs in bending. The most well-known methods are the Yield Line Method [1] and the Strip Method [2]. The yield line method is based on the upper bound theorem and assumes infinite shear capacity. The strip method is based on the lower bound theorem and assumes zero torsional moment which makes it ineffective with respect to redistribution of internal forces.