توسعه تیرهای فولادی به شکل سرد کارآمد
ترجمه نشده

توسعه تیرهای فولادی به شکل سرد کارآمد

عنوان فارسی مقاله: توسعه تیرهای فولادی به شکل سرد کارآمد برای قابلیت سرویس دهی و حالت های حد نهایی با استفاده از بهینه سازی Big Bang-Big Crunch
عنوان انگلیسی مقاله: Development of optimum cold-formed steel beams for serviceability and ultimate limit states using Big Bang-Big Crunch optimisation
مجله/کنفرانس: سازه های مهندسی – Engineering Structures
رشته های تحصیلی مرتبط: مهندسی عمران، ریاضی
گرایش های تحصیلی مرتبط: سازه، آنالیز عددی
کلمات کلیدی فارسی: فولاد به شکل سرد، بهينه سازي، روش عرض موثر، وضعیت حد قابلیت سرویس دهی، حالت حد نهایی، تجزیه و تحلیل عنصر محدود
کلمات کلیدی انگلیسی: Cold-formed steel (CFS)، Optimisation، Effective width method، Serviceability limit state (SLS)، Ultimate limit state (ULS)، Finite element (FE) analysis
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.engstruct.2019.05.089
دانشگاه: Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, UK
صفحات مقاله انگلیسی: 10
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 3.604 در سال 2018
شاخص H_index: 114 در سال 2019
شاخص SJR: 1.628 در سال 2018
شناسه ISSN: 0141-0296
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E12421
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Eurocode design principals

3. Problem definition

4. Big Bang-Big Crunch algorithm

5. Optimum design of CFS beams

6. Analytical investigation

7. Summary and conclusions

Acknowledgment

References

بخشی از مقاله (انگلیسی)

Abstract

Cold-formed steel (CFS) elements are increasingly used as main structural members in modern construction practice. While flexibility of CFS cross-sectional shape allows achieving higher load carrying capacities by using more efficient shapes, obtaining optimum design solutions can be a challenging task due to end-use constraints and complex behaviour of CFS elements controlled by local, global and distortional buckling modes. This study aims to develop a practical methodology for optimum design of CFS beam sections with maximum flexural strength and minimum deflection under ultimate and serviceability load conditions, respectively, in accordance with Eurocode 3 by taking into account manufacturing and end-use design constrains. Population-based Big Bang–Big Crunch Optimisation method is employed to obtain optimum design solutions for twelve different CFS cross-sectional prototypes. To verify the flexural strength and stiffness of the optimum beam sections, detailed nonlinear finite element (FE) models are developed using ABAQUS by considering both material nonlinearity and initial geometrical imperfections. It is shown that the optimised sections based on serviceability limit state (SLS) and ultimate limit state (ULS) can provide, respectively, up to 44% higher effective stiffness and 58% higher bending moment capacity compared to a standard lipped channel beam section with the same plate width and thickness. Using plain channel and folded-flange sections generally leads to the best design solutions for SLS and ULS conditions, respectively. Finally, the results of detailed FE models are used to evaluate the adequacy of EC3 proposed procedures to estimate CFS beam capacity and deflection at ULS and SLS, respectively.

Introduction

Cold-formed steel (CFS) load-bearing members and structural systems are increasingly used in modern construction, for example in modular buildings, stud wall systems, purlins, trusses, side rails and cladding. Although CFS elements are susceptible to local/distortional buckling, they can be more economical and efficient compared to similar hot-rolled sections, due to their inherent advantages such as high strength-to weight ratio, speed and efficiency of construction, and especially higher flexibility in manufacturing various profiles and sizes through cold-rolling or press-braking process at ambient temperature. The flexibility in CFS cross-sectional shapes provides an excellent opportunity to achieve higher load carrying capacities by using more efficient design solutions. However, this can be a challenging task due to typical manufacturing and end-use design constraints and complex behaviour of CFS elements controlled by combinations of local, global and distortional buckling modes. In general, optimisation of CFS members may aim to obtain an optimal cross-sectional shape without considering any restriction on the general shape of the sections (i.e. selfshape optimisation) (e.g. [1–7]), or determine optimum relative dimensions of a predefined cross-section (i.e. size optimisation) (e.g. [8–23]).