عدم اطمینان از شکنندگی و برآورد خطر
ترجمه نشده

عدم اطمینان از شکنندگی و برآورد خطر

عنوان فارسی مقاله: سنجش کمی عدم اطمینان از شکنندگی و برآورد خطر به دلیل تنوع ورودی لرزه ای و عدم اطمینان مدل ظرفیت
عنوان انگلیسی مقاله: Uncertainty quantification of fragility and risk estimates due to seismic input variability and capacity model uncertainty
مجله/کنفرانس: سازه های مهندسی – Engineering Structures
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: زلزله، سازه
کلمات کلیدی فارسی: عملکرد شکنندگی، تنوع پارامتری، تنوع درجه شکست، ظرفیت احتمالی، خود راه اندازی
کلمات کلیدی انگلیسی: Fragility function، Parameter variability، Failure rate variability، Probabilistic capacity، Bootstrap
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.engstruct.2019.05.067
دانشگاه: CONSTRUCT-LESE, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
صفحات مقاله انگلیسی: 13
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 3.604 در سال 2018
شاخص H_index: 114 در سال 2019
شاخص SJR: 1.628 در سال 2018
شناسه ISSN: 0141-0296
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12439
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Modelling the fragility function and the rate of failure

3. Methodology to analyse the performance of the procedures assessing the variability of fragility and failure rate estimates

4. Description of the selected case studies

5. Comparing the performance of the procedures for assessing the variability of fragility and failure rate estimates

6. Conclusions

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

When evaluating the probabilistic seismic performance of a structure in the context of Performance-Based Earthquake Engineering (PBEE) applications, only estimates of the true response are obtained due to the finite size of the group of records selected to represent the seismic scenario. The proposed study examines the variability of these estimates, in terms of fragility parameters and failure rates, by implementing a procedure that creates seismic scenario-consistent groups of records based on regrouping criteria applied to a larger set of records. The results are then compared to those obtained from a statistical approach based on the bootstrap resampling procedure, whose validity is disputed due to its incompatibility with common applications involving probabilistic seismic performance assessment. Given that bootstrap resampling assumes that each bootstrap sample is random, this condition is incompatible with requirements involving the need to match specific spectral statistics of the group of records with a target spectrum. Due to the increased computational cost of the procedure based on regrouping criteria, the effect of this incompatibility is analysed by examining the agreement between the two procedures for several case studies and the conditions under which bootstrap resampling leads to a reduced level of error. Further insights about the variability of the estimates are obtained by analysing scenarios with deterministic and probabilistic thresholds of the limit state capacity. Among other aspects, the results show that, for both capacity thresholds, bootstrap resampling can provide acceptable results as long as a sufficient number of ground motions and number of stripes are used.

Introduction

Practical guidelines provided by the Performance-Based Earthquake Engineering framework for the probabilistic assessment of the seismic performance of a building [1] draw attention to various sources of uncertainty. Common sources are those associated with the seismic input, usually expressed by the seismic hazard uncertainty [2] and the record-to-record variability [3], the structural modelling, such as the variability of geometric properties and material constitutive laws [1], and limit state definitions, like the capacity modelling errors [4]. These uncertainties can be accounted for during the structural analysis of the numerical model or in a subsequent post-processing stage of the analysis results. Depending on the stage of the analysis in which the different uncertainties are accounted for, their combination can be performed using Monte Carlo simulation-based techniques or alternative simplified methods, such as first-order second-moment techniques (e.g. see [5–9]). Nevertheless, it is commonly agreed that accounting for uncertainties changes the seismic demand, the fragility function parameters [10], the associated seismic risk [11,12], as well as the expected losses [13].