سختی سطح قطعات Ti-6Al-4V
ترجمه نشده

سختی سطح قطعات Ti-6Al-4V

عنوان فارسی مقاله: سختی سطح قطعات Ti-6Al-4V به دست آمده توسط ذوب لیزر انتخابی (SLM) و ذوب پرتو الکترونی (EBM): تأثیر بر عمر فرسودگی چرخه بالا
عنوان انگلیسی مقاله: Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life
مجله/کنفرانس: پروسیدیای مهندسی – Procedia Engineering
رشته های تحصیلی مرتبط: مهندسی مکانیک، ریاضی
گرایش های تحصیلی مرتبط: ساخت و تولید، آنالیز عددی
کلمات کلیدی فارسی: فرسودگی چرخه بالا، ذوب لیزر انتخابی، ذوب پرتو الکترونی، سختی سطح، Ti-6Al-4V، روش عنصر محدود
کلمات کلیدی انگلیسی: HCF; SLM; EBM; Surface Roughness; Ti-6Al-4V; FEM
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.proeng.2018.02.010
دانشگاه: Arts et Metiers Paristech, I2M, CNRS, Talence 33400, France
صفحات مقاله انگلیسی: 9
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 0.970 در سال 2018
شاخص H_index: 51 در سال 2019
شاخص SJR: 0.277 در سال 2018
شناسه ISSN: 1877-7058
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12454
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1-Introduction

2-Materials and Methods

3-Results and Discussions

4-Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Selective Laser Melting (SLM) and Electron Beam Melting (EBM) are powder bed fusion processing which allows to build-up parts by successive addition of layers using 3D-CAD models. Among the advantages, are the high degree of freedom for part design and the small loss of material, which explain the increase of Ti-6Al-4V parts obtained by these processes. However, Ti-6Al-4V parts produced by SLM and EBM contain defects (surface roughness, porosity, tensile residual stresses) which decrease significantly the High Cycle Fatigue (HCF) life. In order to minimize the porosity and tensile residual stresses, post-processing treatments like Hot Isostatic Pressing (HIP) and Stress Relieving are often conducted. But the modification of the surface roughness by machining is very costly and not always possible, especially for parts with complex design. The aim of this work is to evaluate the effect of the surface roughness and microstructure of Ti-6Al-4V parts produced by SLM and EBM on the HCF life. Five sets of specimens were tested in tension-compression (R=-1; f=120Hz): Hot-Rolled (reference); SLM HIP machined; SLM HIP As-Built; EBM HIP machined; EBM HIP As-Built. For each condition, microstructure characterization, observation of the fracture surface of broken specimens and surface analysis were carried out respectively by Optical Microscope (OM), Scanning Electron Microscope (SEM) and 3D optical profilometer. Results of fatigue testing show a significant decrease of the HCF life mainly due to the surface roughness. Along with experimental testing, numerical simulations using FEM were conducted using the surface scans obtained by profilometry. Based on extreme values statistics of the crossland equivalent stress averaged on a critical distance, a methodology is proposed to take into account the effect of the surface roughness on the HCF life.

Introduction

These defects lead to an early initiation of the fatigue cracks and it is well known that, before any posttreatment, the HCF strength of the as-built specimens is not suitable for aircraft loadbearing applications [9]. It is also hard to quantify and understand the respective influence of these defects since in many studies, the early crack initiation is mostly due to a combination of the porosity, surface roughness, residual stresses and brittle microstructure [3, 9, 10]. Moreover the additively manufactured specimens used for aircraft applications are almost systematically stress-relieved and HIP.On the other hand, the surface roughness is not always removable since the parts may have a very complex shape. It is then very important to understand its effect on the HCF strength. This study compares results of HCF tests on SLM and EBM stress-relieved HIP specimens with either machined or as-built surfaces. This procedure allows eliminating both residual stresses and porosity, homogenizes the microstructure of the samples and to highlight the effect of the surface roughness. Along with experimental testing, numerical simulations using FEM were conducted using the surface scans obtained by profilometry. There are many existing models accounting for the effect of the surface roughness on the HCF strength [11–14] but only for periodic roughness obtained by machining.