سیستم منطق فازی نوع 2 بر اساس بهینه سازی کلونی مورچه
ترجمه نشده

سیستم منطق فازی نوع 2 بر اساس بهینه سازی کلونی مورچه

عنوان فارسی مقاله: طراحی سیستم های منطق فازی نوع 2 بر اساس بهینه سازی کلونی مورچه
عنوان انگلیسی مقاله: Design of type-2 Fuzzy Logic Systems Based on Improved Ant Colony Optimization
مجله/کنفرانس: مجله بین المللی کنترل، اتوماسیون و سیستم ها - International Journal of Control, Automation and Systems
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: مهندسی الگوریتم ها و محاسبات، مهندسی نرم افزار
کلمات کلیدی فارسی: بهینه سازی کلونی مورچه، سیستم منطق فازی از نوع A2-C1، بهینه سازی کلونی مورچه بهبودیافته، شبکه عصبی
کلمات کلیدی انگلیسی: Ant colony optimization، A2-C1 type fuzzy logic system، improved ant colony optimization، neural network
شناسه دیجیتال (DOI): https://doi.org/10.1007/s12555-017-0451-1
دانشگاه: College of Science، Liaoning University of Technology، Jinzhou، China
صفحات مقاله انگلیسی: 9
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 2/593 در سال 2018
شاخص H_index: 46 در سال 2019
شاخص SJR: 0/510 در سال 2018
شناسه ISSN: 1598-6446
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E12688
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- INTRODUCTION

2- THE BASIC CONCEPTS OF IMPROVED ANT COLONY OPTIMIZATION

3- THE BASIC CONCEPTS AND FRAMEWORK OF INTERVAL TYPE-2 TSK TYPE FUZZY LOGIC SYSTEM

4- THE DESIGN OF A2-C1 TYPE INTERVAL TSK FUZZY LOGIC SYSTEM BASED ON IACO

5- APPLICATION EXAMPLES

6- CONCLUSION

REFERENCES

بخشی از مقاله (انگلیسی)

Abstract

An Improved Ant Colony Optimization (IACO) is proposed to design A2-C1 type fuzzy logic system (FLS) in the paper. The design includes parameters adjustment and rules selection, and the performance of the intelligent fuzzy system, which can be improved by choosing the most optimal parameters and reducing the redundant rules. In order to verify the feasibility of the proposed algorithm, the intelligence fuzzy logic systems based on the algorithms are applied to predict the Mackey-Glass chaos time series. The simulations show that both the IACO and ACO have better tracking performances. The results compared with classical algorithm BP ( back-propagation design) shows the tracking performance of IACO is more precise, the result compared with ACO shows that either the training result or the testing result, the tracking performance of IACO is better, and IACO has a faster convergence rate than ACO, the results compared with the Intelligent type-1 fuzzy logic systems show that both the A2-C1 type FLS based on IACO and ACO have better tracking performance than type-1 fuzzy logic system.

INTRODUCTION

Nowadays, fuzzy logic system is applied into a variety of fields. Professor L. A. Zadeh proposed the conception of fuzzy set first time [1], from that time on, fuzzy logic system attracts a large number of scholars to research. Although, fuzzy logic systems have some advantages, but there are several shortcomings, the main shortcomings are that it is too difficult to obtain the optimal parameters and rule explosion. Recent years, it has been a research hot spot that adopting intelligent algorithms to design of fuzzy logic system, respectively. Lian et al. optimized the radial basis function neural network based on QPSO, and the result was better than BP algorithm and least square method [2]. Zhai et al. combined the QPSO with the non single point interval type-2 fuzzy logic system and used to design of image noise filter, the result was better than traditional non fuzzy methods [3]. Yazdi combined GA with fuzzy logic system, and it was applied to the optimization of off center braced frame system, compared with the structure optimized only by GA, the effect was more remarkable [4]. Juang et al. combined ant colony optimization with fuzzy cluster to design fuzzy logic system, and used for nonlinear plant tracking control, compared with PSO and GA, the results were more better [5].