بررسی سنگ زنی سرامیک آلومینا با استفاده از حداقل مقدار روغنکاری
ترجمه نشده

بررسی سنگ زنی سرامیک آلومینا با استفاده از حداقل مقدار روغنکاری

عنوان فارسی مقاله: روش منطق فازی برای بررسی سنگ زنی سرامیک آلومینا با استفاده از حداقل مقدار روغنکاری
عنوان انگلیسی مقاله: Fuzzy logic method to investigate grinding of alumina ceramic using minimum quantity lubrication
مجله/کنفرانس: مجله بین المللی فناوری سرامیک کاربردی - International Journal Of Applied Ceramic Technology
رشته های تحصیلی مرتبط: مهندسی مواد
گرایش های تحصیلی مرتبط: متالورژی، نانو مواد، متالورژی صنعتی
کلمات کلیدی فارسی: سنگ زنی، آلومینا، نانوذرات، نانولوله های کربن، منطق فازی، آلومینا
کلمات کلیدی انگلیسی: grinding، alumina، nanoparticles، carbon nanotube، fuzzy logic، alumina
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1111/ijac.13219
دانشگاه: Department of Mechanical Engineering, Centre of Advanced Manufacturing and Material Processing, University of Malaya, Kuala Lumpur, Malaysia
صفحات مقاله انگلیسی: 16
ناشر: وایلی - Wiley
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
شناسه ISSN: 1744-7402
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E12689
رفرنس: دارای رفرنس در انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- INTRODUCTION

2- EXPERIMENTATION

3- EXPERIMENTAL RESULTS

4- FUZZY LOGIC

5- DISCUSSION

6- CONCLUSIONS

REFERENCES

بخشی از مقاله (انگلیسی)

Abstract

The use of nanofluid in lubrication during machining of advanced engineering ceramics has been found to be highly efficient and eco‐friendly. This work involves experimental investigation of grinding Alumina (Al2O3) ceramic to determine the effect of the grinding variables. The grinding variables considered include depth of cut, feed rate, type of diamond wheel, and lubrication type. Moreover, the response parameters considered include grinding power, coefficient of friction, and surface quality. The responses obtained during the experiments were used to develop a fuzzy logic prediction model. The findings from this work can be concluded as follows: (a) The depth of cut and feed rate have direct proportional relationship with the grinding power and coefficient of friction. (b) The metallic bonded diamond wheel was found to have higher machining efficiency than the resinoid bonded one. (c) Higher number of diamond grits produces lower frictional coefficient. (d) The carbon nanotube based nanofluid when used in the minimum quantity lubrication (MQL) process proffers better lubrication capability than conventional flood cooling system. (e) The developed fuzzy logic models were found to have high prediction accuracies of 97.22%, 98.60%, and 96.8%, respectively, for grinding power, grinding force ratio, and surface roughness.

INTRODUCTION

Advanced engineering ceramics such as alumina, zirconia, silicon nitride etc have gained high popularity in biomedical and aerospace applications, due to their excellent hardness, high wear and thermal resistances, biocompatibility, and aesthetics. Among the conventional machining techniques used to machine advanced ceramics, surface grinding using diamond wheels is still the most efficient method utilized when processing the brittle materials. Studies have shown that machining takes up a bunch of the cost of producing advanced ceramic components. Due to their excessive hardness, there are many setbacks encountered during the machining of these kind of materials. Studies have shown that the difficulty encountered during the machining results about a great limitation to their extensive usage in various engineering fields. In addition, there is high rate formation of residual deformations such as macro and micro‐cracks, during machining of the brittle materials. These unwanted deformations have been found to deteriorate the quality of the manufactured components. As such, there is need to improve on the machining of these materials, especially improving the efficiency and achieving defect‐free components at lower costs.