استفاده از الگوریتم پیوندی و اصلاح شده بهینه سازی ازدحام ذرات در موتور القایی
ترجمه نشده

استفاده از الگوریتم پیوندی و اصلاح شده بهینه سازی ازدحام ذرات در موتور القایی

عنوان فارسی مقاله: تشخیص خرابی نوار شکسته روتور در موتور القایی با استفاده از یک الگوریتم پیوندی ناحیه اعتماد و اصلاح شده بهینه سازی ازدحام ذرات
عنوان انگلیسی مقاله: Broken Rotor Bar Fault Detection of Induction Motors Using a Joint Algorithm of Trust Region and Modifed Bare-bones Particle Swarm Optimization
مجله/کنفرانس: مجله چینی مهندسی مکانیک - Chinese Journal of Mechanical Engineering
رشته های تحصیلی مرتبط: مهندسی برق
گرایش های تحصیلی مرتبط: مهندسی الکترونیک، سیستم های قدرت، الکترونیک قدرت و ماشینهای الکتریکی
کلمات کلیدی فارسی: تشخيص خطا، نوار شکسته روتور، موتورهاي القايي، بهينه سازي ازدحام ذرات، منطقه اعتماد
کلمات کلیدی انگلیسی: Fault detection، Broken rotor bars، Induction motors، Bare-bones particle swarm optimization، Trust region
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1186/s10033-019-0325-y
دانشگاه: School of Electrical and Power Engineering, China University of Mining & Technology, Xuzhou 221116, China
صفحات مقاله انگلیسی: 14
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 2/186 در سال 2018
شاخص H_index: 27 در سال 2019
شاخص SJR: 0/803 در سال 2018
شناسه ISSN: 1000-9345
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12711
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Introduction

BRB Detection Method Using Global Optimization Algorithm

Joint Algorithm Based on Particle Swarm Optimization and Trust Region

Detection Procedure of TR-MBPSO-Based Method and Simulation Analysis

Experimental Verification

Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar (BRB) fault diagnosis of induction motors. Discrete Fourier transform (DFT) is the most popular technique in this feld, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence efect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm (called TR-MBPSO) based on a modifed bare-bones particle swarm optimization (BPSO) and trust region (TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modifed BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10−4 , but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components.

Introduction

Induction motors are widely used in the industry, owing to many advantages such as simple construction, reliability and high efciency. Although such motors are considerably reliable and robust, they still sufer from internal machine faults caused by corrosive and dusty environments. One of the most common faults is a broken rotor bar (BRB), which accounts for approximately 10% of total induction motor faults [1]. Terefore, early BRB detection in induction motors is surely signifcant. When a broken bar occurs in the rotor, the geometry and magnetic fux of the motor are unbalanced. New sideband frequency components at (1±2s)f1 Hz will appear in the stator current, where s is the slip and f1 is the power supply frequency [2]. Tis implies that the BRB fault can be detected efciently by using the frequencies and amplitudes of (1±2s)f1 components. Tus, motor current signature analysis (MCSA), which is non-invasive, is the most widely used technique for BRB detection.