راه حلی برای سیاست نگهداری بهینه برای کابل های برق
ترجمه نشده

راه حلی برای سیاست نگهداری بهینه برای کابل های برق

عنوان فارسی مقاله: الگوریتم برنامه نویسی پویای احتمالی: یک راه حل برای سیاست نگهداری بهینه برای کابل های برق
عنوان انگلیسی مقاله: Probabilistic dynamic programming algorithm: a solution for optimal maintenance policy for power cables
مجله/کنفرانس: قابلیت اطمینان چرخه عمر و مهندسی ایمنی - Life Cycle Reliability and Safety Engineering
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی برق
گرایش های تحصیلی مرتبط: انتقال و توزیع، مهندسی الگوریتم ها و محاسبات، برنامه نویسی کامپیوتر، الکترونیک قدرت
کلمات کلیدی فارسی: احتمال، بهینه سازی، نگهداری، الگوریتم، عدم موفقیت
کلمات کلیدی انگلیسی: Probability، Optimization، Maintenance، Algorithm، Failure
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1007/s41872-019-00074-3
دانشگاه: Alliance Manchester Business School, The University of Manchester, Manchester M15 6PB, UK
صفحات مقاله انگلیسی: 11
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
شناسه ISSN: 2520-1352
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12849
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Proposed methodology

3- Probabilistic dynamic programming algorithm

4- Numerical example

5- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

This paper presents a probabilistic dynamic programming algorithm to obtain the optimal cost-efective maintenance policy for a power cable. The algorithm determines the states which a cable might visit in the future and solves the functional equations of probabilistic dynamic programming by backward induction process. The optimisation model considers the probabilistic nature of cables failures. This work specifes the data needs, and presents a procedure to utilize maintenance data, failure data, cost data, and condition monitoring or diagnostic test data. The model can be used by power utility managers and regulators to assess the fnancial risk and schedule maintenance.

Introduction

Power cables play an integral part in the transmission and distribution of electricity. The reliability of power cable contributes substantially towards the reliability of the entire electrical distribution network. The unexpected outages due to the failure of the power cables have a severe impact on utility companies due to tight economic requisites and regulatory pressure. This has engendered a demand for high reliability and a need for the extension of cable life with minimum maintenance cost which can only be achieved by implementation of an efective maintenance policy. In recent years, many methods have been proposed and utilized for the maintenance and replacement of engineering assets; among them, dynamic programming is the most widely used. The dynamic programming approach can provide the optimal cost-efective and reliability-centered maintenance policy for the assets which are required to operate indefnitely. Moghaddam and Usher (2011) presented two dynamic programming-based models to determine the optimal maintenance schedule for a repairable component which has an increasing failure rate. The objective of the two models was to obtain maintenance decision, such that it minimizes total cost subjected to a constraint on reliability and maximizes reliability subjected to a budget constraint on overall cost. In another paper, Korpijärvi and Kortelainen (2009) showed the application of dynamic programming for the maintenance of electric distribution system. Abbasi et al. (2009) developed a priority-based dynamic programming model to schedule the maintenance of the overhead distributed network. They adopted a risk management approach to consider the actual condition of the electrical components and expected fnancial risk in the model. An application of dynamic programming for maintenance of power cable was presented by Bloom et al. (2006). The model represents life-cycle cost approach and it can provide an appropriate time to utilize diagnostic test information in a cost-efective manner. However, the model fails to consider the random failure behaviour of the cable and does not optimize the cost of diferent maintenance decisions.