ارزیابی انتشارات موتور از طریق دمانگاری
ترجمه نشده

ارزیابی انتشارات موتور از طریق دمانگاری

عنوان فارسی مقاله: رویکرد تصمیم گیری چند صفتی برای فرآیند پیرولیز Aegle marmelos با استفاده از TOPSIS و تجزیه و تحلیل رابطه خاکستری: ارزیابی انتشارات موتور از طریق دمانگاری فروسرخ جدید
عنوان انگلیسی مقاله: Multi-attribute decision-making approach for Aegle marmelos pyrolysis process using TOPSIS and Grey Relational Analysis: Assessment of engine emissions through novel Infrared thermography
مجله/کنفرانس: مجله تولید پاک – Journal of Cleaner Production
رشته های تحصیلی مرتبط: مهندسی محیط زیست
گرایش های تحصیلی مرتبط: آلودگی هوا
کلمات کلیدی فارسی: Aegle marmelos، پیرولیز، تاپسیس، تجزیه و تحلیل رابطه خاکستری، انتشار اکسیدهای ازت، تصویربردار حرارتی
کلمات کلیدی انگلیسی: Aegle marmelos; Pyrolysis; TOPSIS; GRA; NOx emission; Thermal Imager
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus – Master Journals List – JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jclepro.2019.06.188
دانشگاه: Department of Mechanical Engineering, Government College of Technology, Coimbatore, 641013, India
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 73.096 در سال 2018
شاخص H_index: 150 در سال 2019
شاخص SJR: 1.620 در سال 2018
شناسه ISSN: 0959-6526
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 34
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12892
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


Graphical abstract


Nomenclature


1. Introduction


2. Materials and methods


3. Result and discussion


4. Conclusion


References

نمونه متن انگلیسی مقاله

Abstract


This research focuses on the selection of the optimum process parameters for Aegel marmelos (AM) pyrolysis experiment based on multi-objective decision-making techniques. This investigation presents the optimization report for obtaining maximum pyrolysis oil from AM de-oiled seed cake through thermochemical conversion (pyrolysis) process. The pyrolysis process has been conducted according to L27 orthogonal array with chosen input control factors such as pyrolysis temperature (°C), heating rate (°C/min) and biomass particle size (mm). The output response parameters measured are the bio-oil yield, bio-char yield and biogas yield. The multi-objective decision-making approach namely Technique for order preference by similarity to ideal solution (TOPSIS) and Grey relational analysis (GRA) techniques are employed to determine the optimum pyrolysis process parameters to maximize the yield of AM bio-oil. The optimized values of pyrolysis temperature (PT), heating rate (HR) and feedstock particle size (PS) are 600 °C, 10 °C/min and 0.6 mm. At peak engine loading condition, 20% AM bio-oil + 80% diesel fuel blend (AM20) emit lower carbon dioxide (CO2 = 8.68%) and oxides of nitrogen (NOx = 1401 ppm) emissions as compared with diesel (D) CO2 (10.33%) and NOx (1511 ppm) emissions. The association between exhaust gas temperature and NOx emission was inferred using a novel approach of thermal imager by sensing the infrared rays from the hot surface of the exhaust port. Infrared thermal images are captured during the engine operations fuelled with bio-oil at the optimum pyrolysis conditions concluded by TOPSIS and GRA results (PT = 600 °C, HR = 10 °C/min and PS = 0.6 mm). According to the thermal imaging result, AM20 blend produces the lower amount of NOx emissions compared with neat diesel and it is suggested that AM bio-oil can be used as engine fuel instead in order to preserve the eco-system stability and biodiversity.


Introduction


Fossil fuels play a vital role in the transportation sector but emit harmful gases like carbon mono oxide, oxides of nitrogen, hydrocarbons and sulphur content gases etc. which in turn augments the global temperature. The Shortage of fossil fuel resources and its related environmental problems grasped great attention towards bio-fuel research (Bordoloi et al., 2016). Biofuel usage decreases the global warming rate by adopting the closed carbon cycle thereby reducing greenhouse emissions (D’Alessandro et al., 2016; Mi et al., 2016). Foremost benefits of biofuels are eco-friendliness, renewability and bio-degradability (Knothe et al., 2006). Biochemical and thermochemical conversion technologies are commonly used to convert the biomass into solid (bio-char), liquid (bio-oil) and gas (biogas) products. As compared to biochemical routes, thermochemical conversion possesses more advantages in terms of time consumption and decomposing C5 sugars (Bordoloi et al., 2016). Pyrolysis is one of the most capable techniques among the available biomass conversion methods (Halim and Swithenbank, 2016). In the pyrolysis process, biomass is heated in the absence of oxygen atmosphere to derive useful products like bio-oil, biochar and biogas (Abas et al., 2018). The notable advantages of pyrolysis products are that they are eco-friendly, reusable and valorised into fuels and chemicals (Halim and Swithenbank, 2016).

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

ارزیابی انتشارات موتور از طریق دمانگاری
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها