تاثیرات کوپلینگ انعطاف پذیر استوار توربین های بادی شناور در دریا
ترجمه نشده

تاثیرات کوپلینگ انعطاف پذیر استوار توربین های بادی شناور در دریا

عنوان فارسی مقاله: مطالعه در مورد اثرات کوپلینگ انعطاف پذیر استوار توربین های بادی شناور در دریا
عنوان انگلیسی مقاله: Study on Rigid-Flexible Coupling Effects of Floating Offshore Wind Turbines
مجله/کنفرانس: China Ocean Engineering
رشته های تحصیلی مرتبط: مکانیک، مهندسی انرژی
گرایش های تحصیلی مرتبط: تبدیل انرژی، طراحی کاربردی، سیستم های انرژی، قناوری های انرژی، طراحی جامدات
کلمات کلیدی فارسی: توربین بادی شناور در دریا، اثر سفت کننده پویا، مدل پویا همبسته غیر خطی، DARwind
کلمات کلیدی انگلیسی: floating offshore wind turbine، dynamic stiffening effect، nonlinear coupled dynamic model، DARwind
شناسه دیجیتال (DOI): https://doi.org/10.1007/s13344-019-0001-0
دانشگاه: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
صفحات مقاله انگلیسی: 13
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 0/951 در سال 2018
شاخص H_index: 21 در سال 2019
شاخص SJR: 0/421 در سال 2018
شناسه ISSN: 0890-5487
شاخص Quartile (چارک): Q3 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13080
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Theories and methodology

3- Results and discussion

4- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently, investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions. Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well. Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.

Introduction

In recent years, floating offshore wind turbines (FOWTs) have been receiving increasing attention due to their prominent advantages, such as steadier and stronger wind available resources, lower operational noise, reduced visual pollution and fewer space limitations (Karimirad et al., 2011; Bachynski and Moan, 2012; Pérez-Collazo et al., 2015; Ma et al., 2015). FOWTs are complex rigid-flexible coupled multi-body systems (Namik and Stol, 2010; Wang and Sweetman, 2013; Nejad et al., 2015). Moreover, because the slender blades of an FOWT system typically work at a high rotational speed and are influenced by the motions of the floating platform, rigid-flexible coupled dynamic responses of FOWT systems are more complicated than those of the fixed bottom wind turbines. Rigid-flexible coupled multi-body dynamics have received considerable attentions during the development of modern high-speed airplanes (Shabana, 1997; Bauchau, 2011). In the 1970s, Winfrey (1971) proposed the “kinetoelastodynamics” (KED) method to model the dynamic behaviour of rigid-flexible coupled multi-body systems. In this method, the system is first modelled as a rigid multi-body system to calculate the motion and inertia forces on the system.