شکنندگی لرزه ای تجهیزات ایستگاه های فرعی برقی و تاثیرات کنداکتورها بر آن
ترجمه نشده

شکنندگی لرزه ای تجهیزات ایستگاه های فرعی برقی و تاثیرات کنداکتورها بر آن

عنوان فارسی مقاله: اثرات کنداکتورهای اتوبوس برقی بر شکنندگی لرزه ای تجهیزات ایستگاه های فرعی برقی
عنوان انگلیسی مقاله: Effects of rigid bus conductors on seismic fragility of electrical substation equipment
مجله/کنفرانس: مهندسی زلزله و دینامیک خاک - Soil Dynamics And Earthquake Engineering
رشته های تحصیلی مرتبط: عمران، برق
گرایش های تحصیلی مرتبط: الکترونیک، مدارهای مجتمع الکترونیک، الکترونیک قدرت، ماشین های الکتریکی، برق قدرت
کلمات کلیدی فارسی: منحنی های شکنندگی، تجهیزات ایستگاه فرعی به هم پیوسته، برهم کنش دینامیکی، ظرفیت مدار، سوئیچ سَواساز، ترانسفورماتور جریان، سرج ارستر
کلمات کلیدی انگلیسی: Fragility curves، Interconnected substation equipment، Dynamic interaction، Circuit breaker، Disconnect switch، Current transformer، Surge arrester
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.soildyn.2019.105733
دانشگاه: Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
صفحات مقاله انگلیسی: 16
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 2/989 در سال 2018
شاخص H_index: 78 در سال 2019
شاخص SJR: 1/359 در سال 2018
شناسه ISSN: 0267-7261
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13171
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Method

3- Numerical modeling of equipment and conductors

4- Analysis

5- Results and discussion

6- Failure probability evaluation

7- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

The present paper studies the impact of dynamic interaction between high-voltage substation equipment on the response and vulnerability of substation equipment. The 3D numerical model is developed for four types of vulnerable equipment in the both unconnected and connected conditions. The bus slider-rigid bus assembly is utilized to establish the connection between the equipment. The incremental dynamic analysis is carried out in the developed systems to produce the fragility function for each equipment. Also, the Monte Carlo approach is employed to evaluate the accuracy of the generated functions. It is concluded that the incorporation of connection parts in the model can significantly alter the fragility of equipment and the relative performance of vulnerable equipment. Moreover, it is found that when more than two equipment are connected, the effect of indirectly connected equipment can be neglected if the contribution of higher modes to its response is small. The fragility functions for which the interaction effects are accounted can be used to reliably assess the seismic risk of substations.

Introduction

Electrical substations are the nodes of power transmission network which their continuous operation after earthquakes has paramount importance for the well-being of community. The damage of earthquake to substations may impose disruption in rescue operation after the earthquake and in the performance of other critical lifelines such as water delivery systems. Substations are composed of various types of equipment such as surge arrester (SA), current transformer (CT), circuit breaker (CB), disconnect switch (DS), etc., which are connected through the conductors. Most equipment include slender ceramic insulators under a large concentrated mass, which increases the vulnerability to the earthquake-induced forces [1–3]. Moreover, conductors result in the interaction between the equipment with different dynamic characteristic, which in turn can contribute to their vulnerability [4]. Also, as the voltage level of substation is increased, the fragility of its component is increased accordingly. The interconnection between the equipment are provided through the rigid bus assemblies or flexible cables as conductor. Rigid buses include an aluminum pipe with a flexible connector at one end. Two types of common connectors are the flexible strap connector (FSC) and bus slider (BS). Although connectors are originally designed for the thermal expansion purposes, they increase the flexibility and dissipation capacity of conductors, which may lead to the reduction in the adverse interaction effects. However, the transfer of force between equipment, variations of dynamic properties and exceedance of connectors’ displacement limit may cause severe interaction effects. Depending on the slack, cables may increase or decrease the response of equipment. Thus, the interconnected equipment has become a complex dynamic system.