خازن فعال دو پایانه ای و طراحی کاربردی آن
ترجمه نشده

خازن فعال دو پایانه ای و طراحی کاربردی آن

عنوان فارسی مقاله: در مورد طراحی کاربردی یک خازن فعال دو پایانه ای
عنوان انگلیسی مقاله: On the Practical Design of a Two-terminal Active Capacitor
مجله/کنفرانس: نتایج بدست آمده در حوزه در الکترونیک قدرت - Transactions on Power Electronics
رشته های تحصیلی مرتبط: برق
گرایش های تحصیلی مرتبط: الکترونیک، الکترونیک قدرت، مدارهای مجتمع الکترونیک، ماشین های الکتریکی، سیستم های قدرت
کلمات کلیدی فارسی: خازنها، مبدل توان، مدارهای فعال، قابلیت اطمینان
کلمات کلیدی انگلیسی: Capacitors، Power converter، Active circuits، Reliability
شناسه دیجیتال (DOI): https://doi.org/10.1109/TPEL.2019.2893156
دانشگاه: Department of Energy Technology, Aalborg University, Aalborg, Denmark
صفحات مقاله انگلیسی: 15
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 8/554 در سال 2019
شاخص H_index: 222 در سال 2020
شاخص SJR: 2/510 در سال 2019
شناسه ISSN: 0885-8993
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13306
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I- Introduction

II- Two-Terminal Active Capacitor Concept

III- Component Sizing of the Active Capacitor for Cost-Constraint Applications

IV- Impedance Characteristics of the Active Capacitor

V- Start-Up Solutions for the Active Capacitor

VI- A Case Study for A Capacitive Dc Link Application And Experimental Verifications

VII- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

A two-terminal active capacitor concept is proposed recently based on an active power electronic circuit with a voltage control method and self-power scheme. It retains the convenience of use as a passive capacitor with two power terminals only without any additional required connections, and has the potential to either increased power density or reduced design cost depending on the applications. Based on the previously proof-of-concept study, this paper addresses the design constraints, impedance modeling, and start-up solutions of two-terminal active capacitors. A design method for functionality, efficiency, lifetime and cost constraints application is applied to size the active components and passive elements. A voltage feed-forward control scheme is implemented to improve its dynamic response. Two start-up solutions are proposed to overcome the issues brought by the self-power scheme. A case study of an active capacitor for the DC link of a singlephase full-bridge rectifier is presented to demonstrate the theoretical analyses.

INTRODUCTION

The applications of power electronics consume unprecedented quantities of capacitors for harmonic filtering, power balancing, and/or short-term energy storage. In a singlephase voltage-source rectifier or inverter system, the capacitive DC link needs to filter low-frequency current components while limiting the voltage variation within a specific range. In a three-phase system, possible unbalances appearing in line voltages and/or loads introduce low-frequency harmonics in the DC link [1]. Therefore, a bulky capacitor bank is required for the capacitive DC links in most single-phase and three-phase applications. Moreover, large capacitor banks are also necessary for the AC filters in MW-level highpower inverter applications [2]. Electrolytic capacitors, film capacitors, and ceramic capacitors have been applied for one or more of those applications by considering their respective electrical characteristics, cost, volumetric efficiency, and reliability performance. Capacitor technology advancements have introduced to the market high-performance products, such as high-density, long-lifetime, low Equivalent Series Resistance (ESR), or high-temperature series. However, capacitors are still one of the highest failure components in power electronic systems, and the design constraints in cost and/or power density compromised with electrical and reliability performance still impose a great challenge even with the state-of-the-art capacitor technologies [3].