سنتز مبدل های غیر منفرد DC-DC با استفاده از اصل تعادل شار
ترجمه نشده

سنتز مبدل های غیر منفرد DC-DC با استفاده از اصل تعادل شار

عنوان فارسی مقاله: نظریه ای برای سنتز مبدل های غیر منفرد DC-DC با استفاده از اصل تعادل شار
عنوان انگلیسی مقاله: A Theory to Synthesize Non-isolated DC-DC Converters using Flux Balance Principle
مجله/کنفرانس: نتایج بدست آمده در حوزه الکترونیک قدرت - Transactions on Power Electronics
رشته های تحصیلی مرتبط: برق
گرایش های تحصیلی مرتبط: مهندسی الکترونیک، مدارهای مجتمع الکترونیک، الکترونیک قدرت و ماشینهای الکتریکی
کلمات کلیدی فارسی: مبدل های DC-DC، سنتز مبدل، معادله تعادل شار
کلمات کلیدی انگلیسی: DC-DC converters، Synthesis of converter، Flux Balance equation
شناسه دیجیتال (DOI): https://doi.org/10.1109/TPEL.2019.2898702
دانشگاه: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
صفحات مقاله انگلیسی: 16
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 8/554 در سال 2019
شاخص H_index: 222 در سال 2020
شاخص SJR: 2/510 در سال 2019
شناسه ISSN: 0885-8993
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E13309
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I- Introduction

II- Fundamental Assumptions

III- Inductor Voltage Equation

IV- First-Order Converters

V- Second-Order Converters

References

بخشی از مقاله (انگلیسی)

Abstract

The paper describes a theory to synthesize nonisolated DC-DC converters. It uses the fundamental flux balance equation across the inductors of a converter as a starting point in this synthesis process. The flux balance equations are the linear equations of the input voltage, capacitor voltages and duty cycle (D). The coefficients of these linear equations can be selected from a finite set of choices. These choices define the converter topologies which are subsequently used to synthesize a converter. The synthesis procedure applies to a converter of multiple order. All the possible converters are identified for a first order topology. In the case of second-order converters, all the choices of the flux balance equation are defined. Based on these choices three new quadratic topologies are derived and verified to demonstrate the effectiveness of the theory. The procedure to synthesize a converter from a given voltage conversion ratio is also outlined.

INTRODUCTION

Non-isolated DC-DC converters are the basic building blocks for power processing in renewable applications, data centers, and various consumer electronics devices, etc. Buck, Boost, and Buck-boost topologies are the three major topologies which are manipulated to obtain other non-isolated topologies [1-17]. With increasing novel areas of application, there is a need to look for DC-DC converters with a given voltage conversion characteristic. For example, quadratic buck (Q buck) converter provides a very low output to input conversion ratio at a relatively higher duty-cycle [12-13], which makes it suitable for bias voltage derivation when input DC is very high. Mostly, converter topologies are invented intuitively or by combining the existing basic topologies of buck, boost, and buck-boost converter. However, a systematic procedure to synthesize a converter topology from the required voltage conversion ratio is scarce. This paper presents a thorough review of the prior attempts to generalize DC-DC converter synthesis process and subsequently proposes a method to synthesize the exhaustive set of DC-DC converters of a given order. While many DC-DC converters have been invented over the past few decades, there has been a constant drive among the researchers to find a unifying link among the different DC-DC converter topologies and find a generalized converter synthesis theory. Many such approaches such as graph-theoretic approach with duality principle [1], [2], converter switching cell theory [3], [4], [5], [6], analytical synthesis theory [7], [8], and converter synthesis with layer and graft schemes [9-11], etc., are presented in the literature. The graph-theoretic approach was used in [1] to establish a relation between basic Pulse Width Modulated (PWM) converters [1-7, 18-22].