مسیرهای نوآوری یک فناوری نوظهور
ترجمه نشده

مسیرهای نوآوری یک فناوری نوظهور

عنوان فارسی مقاله: ردیابی تحولات سیستم و مسیرهای نوآوری یک فناوری نوظهور: نانوذرات لیپید جامد
عنوان انگلیسی مقاله: Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles
مجله/کنفرانس: پیش بینی فناورانه و تغییرات اجتماعی – Technological Forecasting and Social Change
رشته های تحصیلی مرتبط: مدیریت، شیمی
گرایش های تحصیلی مرتبط: مدیریت نوآوری و فناوری، نوآوری تکنولوژی، نانوشیمی
کلمات کلیدی فارسی: نانوذرات لیپید جامد، شناسایی موضوع تحقیق، مسیرهای نوآوری فناوری، علم و فناوری جدید و نوظهور، کاوش در فناوری، نقشه راه فناوری
کلمات کلیدی انگلیسی: Solid lipid nanoparticles، Research topic identification، Technology innovation pathways، New and emerging، science & technology، Tech mining، Technology roadmapping
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.techfore.2018.04.026
دانشگاه: School of Economics and Management, Xidian University, Xi’an, Shaanxi 710126, China
صفحات مقاله انگلیسی: 10
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.852 در سال 2018
شاخص H_index: 93 در سال 2019
شاخص SJR: 1.422 در سال 2018
شناسه ISSN: 0040-1625
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13402
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Related work

3. Methodology

4. Case study

5. Conclusions

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

Accurately evaluating opportunities in new and emerging science and technologies is a growing concern. This study proposes an integrated framework for identifying a range of potential innovation pathways and commercial applications for solid lipid nanoparticles – one particularly promising contender within the field of nanoenabled drug delivery. Several text mining techniques – term clumping, SAO technique, and net effect analysis – as well as technology roadmapping, are combined with expert judgment to identify the main areas of R&D in this field, and to track their evolution over time. Through analysis, data from multiple sources, including research publications, patents, and commercial press, reveal possible future applications and commercialization opportunities for this emerging technology. We find that research is moving away from materials and delivery outcomes toward clinical applications. The most promising markets are pharmaceuticals and cosmetics; however, the “time-to-market” is much shorter for cosmetics than it is for pharmaceuticals. The most significant contributions of this paper have been highlighted as follows. One innovation is extracting the intelligence from three kinds of data sources after in-depth considering their characteristics and matching with the features of different technology development stages to identify innovative research topics. The second one is combining SAO technique with net effect analysis to identify what the evolutionary links between research topics are, and then to use TRM to visualize the evolution of the main areas of R&D over time.

Introduction

New and emerging science and technology has attracted great attention among scholars because of its tremendous potential to improve society and stimulate economic development. However, the threats and opportunities inherent in such technologies can cause developers to proceed with caution. On the one hand, the existing competitive advantages inherent in current technological competencies offer stability, and new technology may threaten these advantages or even eliminate entire markets. On the other hand, early analysis of new technical areas may present opportunities to take the lead before other competitors become entrenched (Guo et al., 2015). Therefore, developing ways to assess the current research focus and future development directions of new and emerging science and technologies is a compelling issue. Technology opportunity analysis (Porter et al., 1994), which applies data mining and text mining tools to ST&I resources to detect technological innovation (Ma et al., 2014 and Ma et al., 2016) offers one possible solution to this problem. The process allows analysts to explore opportunities for transforming new technologies into new products and, thus, provides decision support to researchers, R&D planners and managers, and science policy-makers (Lee et al., 2015). A number of technology opportunity studies that rely on text mining technologies have been conducted to help derive information for competitive technical intelligence analysis, technology development trend analysis (Ma and Porter, 2015), and forecasting (Ailem et al., 2016; Song et al., 2017).