تعاملات در تحقیقات داده های بزرگ
ترجمه نشده

تعاملات در تحقیقات داده های بزرگ

عنوان فارسی مقاله: کشف و پیش بینی تعاملات در تحقیقات داده های بزرگ: یک مطالعه پیشرفته یادگیری کتابشناختی
عنوان انگلیسی مقاله: Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study
مجله/کنفرانس: پیش بینی فناورانه و تغییرات اجتماعی – Technological Forecasting and Social Change
رشته های تحصیلی مرتبط: مدیریت، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: نوآوری تکنولوژی، هوش مصنوعی
کلمات کلیدی فارسی: تکامل فناوری، متن کاوی، کتابشناسی، داده بزرگ
کلمات کلیدی انگلیسی: Technological evolution، Text mining، Bibliometrics، Big data
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.techfore.2018.06.007
دانشگاه: Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
صفحات مقاله انگلیسی: 13
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.852 در سال 2018
شاخص H_index: 93 در سال 2019
شاخص SJR: 1.422 در سال 2018
شناسه ISSN: 0040-1625
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13403
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Related work

3. Methodology and data

4. Results: the discovery of interactions in big data research and a forecasting study

5. Conclusions

Acknowledgment

References

بخشی از مقاله (انگلیسی)

Abstract

As one of the most impactful emerging technologies, big data analytics and its related applications are powering the development of information technologies and are significantly shaping thinking and behavior in today’s interconnected world. Exploring the technological evolution of big data research is an effective way to enhance technology management and create value for research and development strategies for both government and industry. This paper uses a learning-enhanced bibliometric study to discover interactions in big data research by detecting and visualizing its evolutionary pathways. Concentrating on a set of 5840 articles derived from Web of Science covering the period between 2000 and 2015, text mining and bibliometric techniques are combined to profile the hotspots in big data research and its core constituents. A learning process is used to enhance the ability to identify the interactive relationships between topics in sequential time slices, revealing technological evolution and death. The outputs include a landscape of interactions within big data research from 2000 to 2015 with a detailed map of the evolutionary pathways of specific technologies. Empirical insights for related studies in science policy, innovation management, and entrepreneurship are also provided.

Introduction

It has been several years since the big data boom led a revolution in both re-shaping thinking and behavior in all sectors of modern society (Mayer-Schönberger and Cukier, 2013). The broad range of big data applications in business intelligence has been highlighted by both academic and business communities (Chen et al., 2012). Defined as “the means of managing, analyzing, visualizing, and extracting useful information from large, diverse, distributed, and heterogeneous data sets1 ”, big data analytics has become essential for the success of commerce (McAfee et al., 2012). Such increasing significance of big data, of course, attracts the attention of science, technology, and innovation policy (STIP) communities, and bridging big data with real-world STIP issues has been raised as an urgent task – e.g., investigating the potential (including both positive and negative impacts) of big data and providing feasible reactions for specific industry sectors (Kwon et al., 2015; Marx, 2013; Nobre and Tavares, 2017). Unfortunately, despite the ambition of big data analytics on creating “big impact” (Chen et al., 2012; Wamba et al., 2015), the success of big data analytics in non-IT companies is still limited (Court, 2015). Now is an opportune time to trace the evolution of big data research to discover the interactions between the techniques used in big data analytics and identify the crucial connections that have the potential to create and extend the sphere of “big impact”.