کاهش در تغییر شکل ناشی از گسل
ترجمه نشده

کاهش در تغییر شکل ناشی از گسل

عنوان فارسی مقاله: در مورد توسعه تکنیک های جدید کاهش در برابر تغییر شکل ناشی از گسل: موانع “هوشمند” و اعضای قربانی
عنوان انگلیسی مقاله: On the development of novel mitigation techniques against faulting–induced deformation: “Smart” barriers and sacrificial members
مجله/کنفرانس: دینامیک خاک و مهندسی زلزله – Soil Dynamics and Earthquake Engineering
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: زلزله، سازه
کلمات کلیدی فارسی: گسستگی گسل، زلزله، کاهش، تعامل خاک و سازه
کلمات کلیدی انگلیسی: Fault rupture، Earthquake، Mitigation، Soil-structure interaction
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.soildyn.2018.04.052
دانشگاه: ETH Zürich, Switzerland
صفحات مقاله انگلیسی: 10
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 2.989 در سال 2018
شاخص H_index: 78 در سال 2019
شاخص SJR: 1.359 در سال 2018
شناسه ISSN: 0267-7261
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13427
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Smart barrier with sacrificial members

3. Numerical simulation

4. Sacrificial members for bridges

5. Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

Contemporary analysis–design methods against faulting can significantly improve life-safety, but the problem of permanent deformation persists. This paper proposes a novel mitigation technique, addressing post-seismic serviceability. A “smart” barrier is employed to divert the fault rupture, introducing a minimum energy path. The “smart” barrier consists of two sheet-pile walls, connected with rows of sacrificial members. The latter are steel rings, whose performance is a function of geometry. The proposed system can be produced in the form of prefabricated panels, and its performance is largely insensitive to site conditions or workmanship. The barrier is compressed, absorbing tectonic deformation with minimum disturbance to the protected structure. The problem is analyzed employing the FE-method, using a thoroughly validated soil constitutive model with strain softening, confirming the efficiency of the mitigation concept. Further analyses demonstrate the use of sacrificial rings to protect continuous bridge decks, being installed between the deck and the bearings.

Introduction

Recent major earthquakes, such as Kocaeli and Düzce (Turkey, 1999), Chi-Chi (Taiwan, 1999), Wenchuan (China, 2008), Kaikoura (New Zealand, 2016) and Kumamoto (Japan, 2016) have shown that faulting-induced ground deformation can cause substantial damage to critical infrastructure (e.g., [34,35,33,15,27,20,28]). One such example is shown in Fig. 1, referring to the failure of the Shih Kang dam in Taiwan, due to 9 m of upthrust by the notorious Chelungpu fault during the 1999 Chi-Chi earthquake. However, several examples of satisfactory performance of a variety of structures have also been observed in past earthquakes (e.g., [11,4,5,16]). Motivated by the need to develop design methods for faulting–hazard mitigation, the interaction of fault ruptures with foundation–structure systems was explored during the QUAKER project. Combining field studies [4,5], centrifuge model tests conducted at the University of Dundee [13], and numerical analyses [8], a thoroughly validated analysis and design methodology has been developed. The foundation system was shown to play a crucial role, with continuous and rigid foundations being advantageous. The concurrent design methods have been applied to a variety of projects, including buildings, bridges, and tunnels (e.g., [1,3,2,9]). The methods developed so far can significantly improve life-safety, but the problem of permanent deformation (rigid-body rotation) has not been resolved. While the structure may survive, it must subsequently be demolished, imposing severe socio-economic consequences.