استخراج ویژگی ثابت تصویر رنگی
ترجمه نشده

استخراج ویژگی ثابت تصویر رنگی

عنوان فارسی مقاله: استخراج ویژگی ثابت تصویر رنگی توسط یک مدل شبکه عصبی همراه پالس (PCNN) تحریک شده با خاصیت توپولوژیکی
عنوان انگلیسی مقاله: Color Image Invariant Feature Extraction by a Topological Property Motivated PCNN Model
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: شبکه های کامپیوتری
کلمات کلیدی فارسی: شبکه عصبی همراه پالس، استخراج ویژگی ثابت، نظریه دریافت توپولوژیکی، نقشه شفافیت، رویکرد ته نشست طیفی
کلمات کلیدی انگلیسی: Pulse coupled neural network, invariant feature extraction, topological perception theory, saliency map, spectral residual approach
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2947601
دانشگاه: School of Information and Electrical Engineering, Ludong University, Yantai 264025, China
صفحات مقاله انگلیسی: 8
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13866
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Topological Perception Theory and Spectral Residual Approach

III. Topological Properties Motivated PCNN

IV. Color Image Invariant Features Extraction by TPCNN

V. Experiments and Analysis

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

Topological invariant features take priority over other vision features in early visual perception stage, which is the core idea of topological perception theory. In order to improve the robustness and distinguishability of the invariant features extracted by pulse coupled neural network (PCNN), the topological properties are integrated into PCNN. The improved PCNN model is called as topological property motivated PCNN (TPCNN), which adopts the saliency map calculated by the spectral residual approach as the important topological properties (the connectivity, and the number of holes in target). In TPCNN, firstly, the normalized saliency map is used as a linking coefficient to enhance the importance of saliency object when we calculating the invariant features. Secondly, the entropy signature of the saliency map is treated as an additional new feature and merged into original features calculated by PCNN, then the final invariant feature is obtained. The proposed TPCNN is used to calculate the invariant feature of different kinds of fish in the paper. Experimental results show that TPCNN outperforms the state-of-art models on invariant features extraction.

Introduction

As a bio-inspired neural network model, the pulse coupled neural network (PCNN) [1], [2] has many good characteristics, such as a single layer, no prior training is required, possessing a good theoretical basis of the biological vision system, etc. Nowadays, PCNN is widely used in image segmentation [3]–[5], image enhancement [6], image authentication [7], [8], image fusion [9], feature extraction and pattern recognition [10]–[14] etc. Though it already has a good performance about the invariant features (also called image signature) extracted by basic PCNN, great changes may happen when the target’s shaping changes a little. To improve the robustness and distinguishability of the invariant features calculated by basic PCNN. We reference the topological perception theory [15], [16] of cognitive psychology and introduce the topological property into the simplified PCNN model. A topological property motivated PCNN (TPCNN) is proposed and it is used to extract the color image invariant features successfully in the paper. Topological perception theory [15], [16] is an important branch of cognitive psychology. It is the psychological foundation of TPCNN model. The core idea of Topological perception theory is that visual perception organization should be interpreted as transformation and invariance over transformation.