امنیت و توان عملیاتی رله های غیر قابل اعتماد
ترجمه نشده

امنیت و توان عملیاتی رله های غیر قابل اعتماد

عنوان فارسی مقاله: در مورد امنیت و توان عملیاتی برای رله های غیر قابل اعتماد برداشت انرژی در سیستم های اینترنت اشیا (IoT) با استفاده از دسترسی چندگانه غیر متعامد (NOMA)
عنوان انگلیسی مقاله: On Security and Throughput for Energy Harvesting Untrusted Relays in IoT Systems Using NOMA
مجله/کنفرانس: دسترسی – IEEE Access
رشته های تحصیلی مرتبط: مهندسی کامپیوتر، مهندسی برق، مهندسی فناوری اطلاعات
گرایش های تحصیلی مرتبط: مهندسی الگوریتم و محاسبات، برق مخابرات، اینترنت و شبکه های گسترده
کلمات کلیدی فارسی: برداشت انرژی، اینترنت اشیا، پوشیدگی لایه فیزیکی، توان عملیاتی، دسترسی چندگانه غیر متعامد (NOMA)، چند ورودی – تک خروجی، رله غیر قابل اعتماد
کلمات کلیدی انگلیسی: Energy harvesting, Internet of Things, physical layer secrecy, throughput, NOMA, MISO, untrusted relay
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2019.2946600
دانشگاه: International School, Duy Tan University, Da Nang 550000, Vietnam
صفحات مقاله انگلیسی: 14
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.641 در سال 2018
شاخص H_index: 56 در سال 2019
شاخص SJR: 0.609 در سال 2018
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13869
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

I. Introduction

II. Related Work

III. System Model

IV. Optimal Power Allocation in the Presence of Untrusted Relays Based on the SOP

V. System Performance Analysis

Authors

Figures

References

بخشی از مقاله (انگلیسی)

Abstract

In this paper, we analyze the secrecy and throughput of multiple-input single-output (MISO) energy harvesting (EH) Internet of Things (IoT) systems, in which a multi-antenna base station (BS) transmits signals to IoT devices (IoTDs) with the help of relays. Specifically, the communication process is separated into two phases. In the first phase, the BS applies transmit antenna selection (TAS) to broadcast the signal to the relays and IoTDs by using non-orthogonal multiple access (NOMA). Here, the relays use power-splitting-based relaying (PSR) for EH and information processing. In the second phase, the selected relay employs the amplify-and-forward (AF) technique to forward the received signal to the IoTDs using NOMA. The information transmitted from the BS to the IoTD risks leakage by the relay, which is able to act as an eavesdropper (EAV) (i.e., an untrusted relay). To analyze the secrecy performance, we investigate three schemes: random-BS-best-relay (RBBR), best-BS-random-relay (BBRR), and best-BS-best-relay (BBBR). The physical layer secrecy (PLS) performance is characterized by deriving closed-form expressions of secrecy outage probability (SOP) for the IoTDs. A BS transmit power optimization algorithm is also proposed to achieve the best secrecy performance. Based on this, we then evaluate the system performance of the considered system, i.e., the outage probability and throughput. In addition, the impacts of the EH time, the power-splitting ratio, the numbers of BS antennas, and the numbers of untrusted relays on the SOP and throughput are investigated. The Monte Carlo approach is applied to verify our analytical results. Finally, the numerical examples indicate that the system performance of BBBR is greater than that of RBBR and BBRR.

Introduction

The Internet of Things (IoT) has attracted the attention of many researchers worldwide [1]–[3]; the main drive behind the future IoT relates to smart sensor technologies, including in farm monitoring, vehicular tracking, healthcare, and industrial environments [4]–[6]. Although the term IoT has been around for almost a decade, the corresponding technologies and protocols, such as massive connectivity, energy constraints, scalability and reliability limitations, and security, are still open research issues [7]–[9]. An important problem caused by the usage of massive IoT devices (IoTDs) is spectrum scarcity [5]. The nonorthogonal multiple access (NOMA) technique has been used as a promising solution to overcome this drawback. This is because NOMA can increase the connectivity and improve spectrum utilization in IoT systems [10]. For example, E. Hossain et al. investigated the system on a large scale using NOMA and concluded that NOMA not only improves spectral efficiency but also increases power efficiency [10]. I. Khan et al. proved that NOMA is a promising approach for future mobile Internet and IoT applications, which will require handling enormous increases in data traffic, massive connectivity, and low latency [9].